Evgeny G Gerasimov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341658/publications.pdf

Version: 2024-02-01

		567281	752698
105	754	15	20
papers	citations	h-index	g-index
105	105	105	521
103	103	103	321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pressure effect on magnetic phase transitions inLa0.75Sm0.25Mn2Si2. Physical Review B, 2005, 72, .	3.2	34
2	Structure, magnetic and magnetothermal properties of the non-stoichiometric ErCo2Mn alloys. Journal of Alloys and Compounds, 2016, 680, 359-365.	5 . 5	23
3	Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn2Si2. Physica B: Condensed Matter, 2002, 322, 297-305.	2.7	21
4	TbxEr1â^'xNi5compounds: An ideal model system for competing Ising-XYanisotropy energies. Physical Review B, 2009, 79, .	3.2	21
5	Magnetic-field-induced martensitic transformations in Ni47 \hat{a} x Mn42 + x In11 alloys (with 0 \hat{a} % x \hat{a} % 2). Physics of Metals and Metallography, 2013, 114, 838-844.	1.0	21
6	Magnetic properties of the off-stoichiometric GdNi2Mnx alloys. Journal of Alloys and Compounds, 2013, 571, 132-137.	5 . 5	21
7	Magnetic phase transitions and giant magnetoresistance in La1â^Sm Mn2Si2 (0â‰xâ‰1). Journal of Alloys and Compounds, 2002, 343, 14-25.	5.5	20
8	Magnetism of compounds with a layered crystal structure. Physics of Metals and Metallography, 2011, 112, 711-744.	1.0	19
9	Effect of low-temperature annealing on the critical parameters of highly textured YBa2Cu3O y. Physics of the Solid State, 2012, 54, 1741-1746. Enhanced survival of short-range magnetic correlations and frustrated interactions in <mml:math< td=""><td>0.6</td><td>19</td></mml:math<>	0.6	19
10	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0012.gif" overflow="scroll"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow>Tintermetallics, Journal of Magnetism and Magnetic</mml:msub>	> ² 13ml:mi	19
11	Materials, 2012, 324, 1907-1912. Interrelation between electronic structure and interatomic distances for compounds. Physica B: Condensed Matter, 2007, 390, 118-123.	2.7	18
12	Magnetic properties and structure of nonstoichiometric rare-earth transition-metal intermetallic compounds TbNi2Mn x (0 $^{\circ}$	1.0	18
13	Improvement of critical parameters of YBa2Cu3O6.9 by low temperature treatment in the presence of water vapors. Cryogenics, 2015, 72, 36-43.	1.7	18
14	Effect of double annealing on the critical parameters of highly textured YBa2Cu3O6.9. Journal of Experimental and Theoretical Physics, 2012, 115, 474-479.	0.9	17
15	Martensitic transformations and magnetic properties of nonstoichiometric alloys of the Ni-Mn-In system. Physics of the Solid State, 2014, 56, 1634-1638.	0.6	17
16	New magnetic structure study of TbNi 5: Evidence of incommensurate structure. Europhysics Letters, 2003, 62, 350-356.	2.0	15
17	Local magnetic moments at X-ray spectra of 3d metals. Journal of Magnetism and Magnetic Materials, 2003, 256, 396-403.	2.3	14
18	Preparation of sintered Nd-Fe-B magnets by pressless process. Physics of Metals and Metallography, 2012, 113, 331-340.	1.0	13

#	Article	IF	Citations
19	Magnetic properties of melt-spun ribbons (Sm1–Zr)(Fe0.92Ti0.08)10 with ThMn12 structure and their hydrides. Journal of Rare Earths, 2019, 37, 1066-1071.	4.8	13
20	Magnetic properties of Tb1â^'xYxMn6Sn6 compounds. Journal of Alloys and Compounds, 2004, 363, 40-45.	5.5	12
21	Magnetic phase transitions in TbNi5 single crystal: Bulk properties and neutron diffraction studies. JETP Letters, 2005, 82, 34-38.	1.4	12
22	Structure, Magnetic and Magnetocaloric Properties of Nonstoichiometric TbCo2Mnx Compounds. Physics of Metals and Metallography, 2018, 119, 1036-1042.	1.0	12
23	Ab initio study of the magnetic properties of possible phases in binary Fe-Pd alloys. Journal of Magnetism and Magnetic Materials, 2020, 499, 166266.	2.3	12
24	Hydrostatic pressure effect on electrical and magnetic properties of electron-doped R0.16Ca0.84MnO3 (R=Pr, Gd, Eu). Physica B: Condensed Matter, 2005, 365, 114-120.	2.7	11
25	Effect of hydrogen intercalation on the critical parameters of YBa2Cu3O y. Physics of Metals and Metallography, 2017, 118, 954-964.	1.0	11
26	Magnetostriction and thermal expansion of nonstoichiometric TbCo2Mn compounds. Journal of Magnetism and Magnetic Materials, 2021, 523, 167628.	2.3	11
27	Enhanced magnetic entropy inGdNi2. Physical Review B, 2007, 75, .	3.2	10
28	Magnetic and magnetocaloric properties of (MnCo)1 \hat{a} x Ge compounds. Physics of Metals and Metallography, 2013, 114, 893-903.	1.0	10
29	Magnetostriction of La0.75Sm0.25Mn2Si2 compound. Journal of Alloys and Compounds, 2016, 676, 74-79.	5.5	10
30	Preparation of high-power permanent magnets from platelike Nd-Fe-B alloys. Physics of Metals and Metallography, 2010, 109, 238-246.	1.0	9
31	Electronic structure of RMn2Si2 (RÂ=ÂY, La) intermetallics: DFT and XPS studies. Journal of Alloys and Compounds, 2017, 695, 1663-1671.	5.5	9
32	Competing exchange interactions and magnetic anisotropy of La1â^'Tb Mn2Si2. Journal of Magnetism and Magnetic Materials, 2017, 422, 237-242.	2.3	9
33	Magnetic structure of La1-Tb Mn2Si2 compounds. Journal of Alloys and Compounds, 2018, 731, 397-402.	5.5	9
34	Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er0.65Gd0.35Co2Mn compounds. Intermetallics, 2022, 140, 107386.	3.9	9
35	Positive magnetoresistance and large magnetostriction at first-order antiferro–ferromagnetic phase transitions in RMn ₂ Si ₂ compounds. Journal of Physics Condensed Matter, 2008, 20, 445219.	1.8	8
36	Effect of additions of zinc stearate on the properties of sintered Nd-Fe-B magnets. Physics of Metals and Metallography, 2013, 114, 285-294.	1.0	8

#	Article	IF	CITATIONS
37	Structure, magnetic and magnetocaloric properties of nonstoichiometric TbCo2Nix compounds. Physics of Metals and Metallography, 2017, 118, 1059-1065.	1.0	8
38	Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796a^'xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity. Jom, 2019, 71, 559-566.	1.9	8
39	Influence of the two-stage plastic deformation on the complex of the magnetoacoustic characteristics of low-carbon steel and diagnostics of its structural state. NDT and E International, 2020, 116, 102330.	3.7	8
40	Magnetic phase transitions in layered intermetallic compounds. Journal of Magnetism and Magnetic Materials, 2012, 324, 3410-3412.	2.3	7
41	Magnetic phase transitions in the Ce(Fe1 \hat{a} ° x Si x)2 compounds. Physics of Metals and Metallography, 2014, 115, 1208-1215.	1.0	7
42	Magnetic phase transitions and magnetocaloric effect in layered intermetallic La0.75Sm0.25Mn2Si2 compound. Journal of Magnetism and Magnetic Materials, 2017, 440, 89-92.	2.3	7
43	Structure and Properties of Sm – Co – Fe – Cu – Zr Magnets for High-Temperature Applications. Metal Science and Heat Treatment, 2018, 60, 498-503.	0.6	7
44	Effect of Tb for Gd substitution on magnetic and magnetocaloric properties of melt-spun (Gd1-xTbx)3Co alloys. Intermetallics, 2019, 104, 1-7.	3.9	7
45	Magnetic Properties of Nonstoichiometric 4f–3d Intermetallics. Physics of Metals and Metallography, 2019, 120, 1347-1353.	1.0	7
46	Magnetic anisotropy of La _{0.75} Sm _{0.25} Mn ₂ Si ₂ compound. Journal of Physics Condensed Matter, 2007, 19, 486202.	1.8	6
47	Heat capacity of the Ni ₅₀ Mn ₃₇ (In _{0.2} Sn _{0.8}) ₁₃ alloy. Journal of Physics: Conference Series, 2011, 266, 012004.	0.4	6
48	Magnetic Properties of Non-Stoichiometric <i>R</i> Ni ₂ Mn _x (<i>R</i> = Tb, Dy) Compounds. Solid State Phenomena, 0, 168-169, 200-203.	0.3	5
49	Concentrational commensurate-incommensurate magnetic phase transition in Y1 â° x Tb x Mn6Sn6. Physics of Metals and Metallography, 2013, 114, 566-572.	1.0	5
50	Giant magnetoresistance and field-induced phase transitions in Tb7Rh3 single crystal. Journal of the Korean Physical Society, 2013, 63, 563-566.	0.7	5
51	Impact of amorphization on the magnetic state and magnetocaloric properties of Gd3Ni. Applied Physics A: Materials Science and Processing, 2014, 116, 1403-1407.	2.3	5
52	Kinetics of hydrogen desorption from MgH2 and AlH3 hydrides. Physics of Metals and Metallography, 2015, 116, 1197-1202.	1.0	5
53	Giant magnetoresistance and field-induced magnetic phase transitions in Gd7Rh3 studied on single crystals. Journal of Alloys and Compounds, 2015, 628, 230-235.	5.5	5
54	Structural and magnetic transformations in Ni51 \hat{a} x Mn36 + x Sn13 alloys. Physics of the Solid State, 2015, 57, 381-385.	0.6	5

#	Article	IF	Citations
55	Effect of rapid quenching on the magnetic state, electrical resistivity and thermomagnetic properties of Gd3Co. Journal of Alloys and Compounds, 2015, 647, 481-485.	5.5	5
56	Structural state and magnetic properties of multilayer-graphene/Fe composites. Physics of Metals and Metallography, 2016, 117, 143-150.	1.0	5
57	Magnetic field induced ferromagnetism in pseudobinary PrAl2â^xNix alloys. Journal of Magnetism and Magnetic Materials, 2016, 404, 133-142.	2.3	5
58	Magnetic order, phase transitions and electrical resistivity of Ho7Rh3 single crystals. Journal of Alloys and Compounds, 2016, 654, 126-132.	5.5	5
59	Martensite Transformation, Magnetotransport Properties, and Magnetocaloric Effect in Ni47Mn42In11 Alloy. Physics of the Solid State, 2019, 61, 654-658.	0.6	5
60	Origin of magnetic phase transition in RMn2Si2 (RÂ=Ârare-earth ion or Y) intermetallics. Computational Materials Science, 2020, 184, 109901.	3.0	5
61	Heterogeneous magnetic state of quasi-binary rare earth intermetallic compounds with CaCu5- and MgCu2-type structures. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 859-860.	2.3	4
62	Metamagnetic transitions in electron-doped single crystals of manganites $Ca < sub > 1$ $a^2 < i > x < i > < sub > (Ln) < sub > < i > x < i > < sub > MnO < sub > 3 < sub > , (Ln = La, Ce; < i > x < i > a < 0.12). Journal of Physics Condensed Matter, 2010, 22, 356003.$	1.8	4
63	Electrical, magnetic properties and electronic structure of non-stoichiometric DyNi ₂ Mn _x compounds. Journal of Physics: Conference Series, 2012, 400, 032050.	0.4	4
64	Resonant photoemission in DyNi2Mn \times rare-earth intermetallides. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 226-229.	0.6	4
65	Electronic magnetic structure of intermetallic compounds RNi2Mn studied by XMCD. Journal of Magnetism and Magnetic Materials, 2017, 440, 50-53.	2.3	4
66	Phase transitions and thermal expansion in Ni51â€"x Mn36 + x Sn13 alloys. Physics of the Solid State, 2017, 59, 2002-2007.	0.6	4
67	Influence of water vapor on the formation of pinning centers in YBa2Cu3O y upon low-temperature annealing. Physics of Metals and Metallography, 2017, 118, 738-748.	1.0	4
68	Magnetic ordering in intermetallicLa1-xTbxMn2Si2compounds. Journal of Magnetism and Magnetic Materials, 2018, 454, 144-149.	2.3	4
69	Magnetic properties of the TbNi2Mnx(0 â‰x≠1) cubic structure compounds. Journal of Physics: Conference Series, 2010, 200, 032049.	0.4	3
70	Effect of structural water on the critical characteristics of highly textured YBa2Cu3O6.9. Physics of the Solid State, 2014, 56, 1742-1747.	0.6	3
71	Effect of thermal cycling on structure and properties of Ni–Mn–In-based alloys. Technical Physics, 2016, 61, 1894-1897.	0.7	3
72	Electrical resistivity, magnetism and electronic structure of the intermetallic 3d/4f Laves phase compounds ErNi2Mnx. AIP Advances, 2018, 8, 105225.	1.3	3

#	Article	IF	CITATIONS
73	Martensitic Transformation and Magnetic Transport Properties in Ni50Mn37Sn13 Alloy. Physics of Metals and Metallography, 2020, 121, 894-898.	1.0	3
74	Magnetic structure and properties of LaFe13–xGaxC compounds (x=2.9, 6.5). Journal of Magnetism and Magnetic Materials, 2006, 302, 165-172.	2.3	2
75	Magnetoresistance of Ni ₅₀ Mn ₃₇ (Sn _{1-X} In _x) ₁₃ Alloys. Solid State Phenomena, 2010, 168-169, 204-207.	0.3	2
76	Magnetic phase transitions in Y 1 \hat{a} °x Tb x Mn 6 Sn 6 , La 1 \hat{a} °x Sm x Mn 2 Si 2 , Lu 2 (Fe 1 \hat{a} °Ñ Mn x) 17 , and I 383, 196-202.	.a(Fe) Tj ET 2.3	ГQq0 0 0 rgB1 2
77	Magnetic structures and magnetic phase transitions in RMn2Si2. AIP Advances, 2018, 8, 101411.	1.3	2
78	Effects of spin polarization on resonant photoemission from d-f states in TbNi2Mnx compounds. EPJ Web of Conferences, 2018, 185, 04008.	0.3	2
79	Magnetic Structures and Magnetic Phase Transitions in Rare-Earth RMn2Si2 Intermetallic Compounds (R = Sm, Tb). Physics of the Solid State, 2018, 60, 1082-1089.	0.6	2
80	Magnetic Neutron Diffraction of Quasi-Two-Dimensional Magnets. Crystallography Reports, 2021, 66, 267-280.	0.6	2
81	Martensitic Transformation, Magnetotransport Properties, and Magnetocaloric Effect in Ni47–ÂxMn42Â+Âxln11 Alloys (0 ≠x ≠2). Physics of the Solid State, 2021, 63, 550-555.	0.6	2
82	Magnetic structure of La0.75Sm0.25Mn2Si2. Physica B: Condensed Matter, 2004, 350, E175-E178.	2.7	1
83	Low-temperature heat capacity of microscopically inhomogeneous PdMn x Fe1 \hat{a} x alloys. Physics of the Solid State, 2006, 48, 291-296.	0.6	1
84	Heat capacity of La1-xYxMn2Si2 compounds. Journal of Magnetism and Magnetic Materials, 2007, 310, e563-e565.	2.3	1
85	Features of properties of microinhomogeneous PdMn x Fe1 \hat{a} ° x alloys. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1066-1068.	0.6	1
86	Spontaneous and Field-Induced Magnetic Phase Transitions in $Tb < sub > 1-x < sub > R < sub > x < sub > Mn < sub > 6 < sub > Sn < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 <$	0.3	1
87	Effect of gallium on the crystal structure and magnetic properties of PrFe11 \hat{a} ° x Ga x C y compounds. Physics of Metals and Metallography, 2009, 108, 441-448.	1.0	1
88	Magnetic phase transitions in La1-xDyxMn2Si2(0 â‰x≠1) compounds. Journal of Physics: Conference Series, 2010, 200, 032018.	0.4	1
89	Magnetic Phase Transitions in La _{1-x} <i>R</i> _x Mn ₂ Si ₂ <i>(i>(R<td>0.3</td><td>1</td></i>	0.3	1
90	Magnetocrystalline anisotropy of Er2(Fe1 \hat{a}^{\cdot} ' x V x)17 compounds. Physics of Metals and Metallography, 2015, 116, 768-773.	1.0	1

#	Article	IF	CITATIONS
91	Effect of water intercalation on the structure and electrophysical properties of YBa2Cu3O6.9. Physics of Metals and Metallography, 2016, 117, 870-875.	1.0	1
92	Magnetic Phase Transitions in Compounds with a Layered Crystal Structure. Physics of Metals and Metallography, 2018, 119, 1309-1312.	1.0	1
93	Exchange-induced spin reorientation in La1-Gd Mn2Si2. Journal of Alloys and Compounds, 2018, 769, 1096-1101.	5.5	1
94	Magnetic properties of the non-stoichiometric TbCo2Mn x and TbCo2Ni x alloys. Journal of Physics: Conference Series, 2019, 1389, 012092.	0.4	1
95	Easy-plane magnetic anisotropy in layered GdMn2Si2 compound with easy-axis magnetocrystalline anisotropy. Journal of Alloys and Compounds, 2020, 818, 152902.	5. 5	1
96	Investigation of Electronic States and Magnetic Domain Structure of La1 \hat{a} \in "xSmxMn2Si2 (x = 0, 0.25) Layered Intermetallic Compounds by Resonant Photoemission Spectroscopy and Magnetic Force Microscopy. Physics of Metals and Metallography, 2022, 123, 451-458.	1.0	1
97	Commensurate-incommensurate magnetic phase transition induced in TbNi5 by an external magnetic field. Physics of Metals and Metallography, 2012, 113, 228-232.	1.0	0
98	Magnetic lock-in phase transition in Tb0.95Er0.05Ni5 driven by low magnetic fields. Journal of Magnetism and Magnetic Materials, 2013, 341, 129-132.	2.3	0
99	Crystal structure and magnetic properties of pseudobinary solid solutions $Pr(\ln 1 \ \hat{a}^2 \times Pb \times)3$. Physics of Metals and Metallography, 2013, 114, 721-726.	1.0	0
100	Magnetic properties of the non-stoichiometric TbCo2Nix alloys. EPJ Web of Conferences, 2018, 185, 04021.	0.3	0
101	Compositional genesis of ferromagnetism in alloys PrNi2â^Co. Journal of Magnetism and Magnetic Materials, 2019, 490, 165489.	2.3	0
102	Spontaneous and induced magnetic phase transitions in Tb0.9Er0.1Ni5. Journal of Magnetism and Magnetic Materials, 2019, 475, 593-601.	2.3	0
103	Martensitic transformation and magnetotransport properties of Ni47Mn42In11 alloy. Journal of Physics: Conference Series, 2019, 1389, 012093.	0.4	0
104	Incommensurate-commensurate magnetic phase transitions in Tb1-x Er x Ni5 compounds. Journal of Physics: Conference Series, 2019, 1389, 012127.	0.4	0
105	Resonant photoemission of intermetallic compounds RMn2Si2 (R = Sm, Tb). AIP Conference Proceedings, 2022, , .	0.4	0