
Jithender J Timothy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wave dispersion and propagation in state-based peridynamics. Computational Mechanics, 2017, 60, 725-738.	4.0	71
2	A cascade continuum micromechanics model for the effective elastic properties of porous materials. International Journal of Solids and Structures, 2016, 83, 1-12.	2.7	39
3	Expansion and deterioration of concrete due to ASR: Micromechanical modeling and analysis. Cement and Concrete Research, 2019, 115, 507-518.	11.0	37
4	Computational Generation of Virtual Concrete Mesostructures. Materials, 2021, 14, 3782.	2.9	20
5	Deterioration of concrete due to ASR: Experiments and multiscale modeling. Cement and Concrete Research, 2021, 149, 106575.	11.0	17
6	Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling. Structural Concrete, 2019, 20, 1265-1278.	3.1	14
7	Cascade Lattice Micromechanics Model for the Effective Permeability of Materials with Microcracks. Journal of Nanomechanics & Micromechanics, 2016, 6, .	1.4	11
8	Degradation in concrete structures due to cyclic loading and its effect on transport processes—Experiments and modeling. Structural Concrete, 2017, 18, 519-527.	3.1	10
9	Cascade continuum micromechanics model for the effective permeability of solids with distributed microcracks: Self-similar mean-field homogenization and image analysis. Mechanics of Materials, 2017, 104, 60-72.	3.2	10
10	Cementitious Composites with High Compaction Potential: Modeling and Calibration. Materials, 2020, 13, 4989.	2.9	10
11	Effective Diffusivity of Porous Materials with Microcracks: Self-Similar Mean-Field Homogenization and Pixel Finite Element Simulations. Transport in Porous Media, 2018, 125, 413-434.	2.6	9
12	A micromechanics model for molecular diffusion in materials with complex pore structure. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 686-712.	3.3	8
13	The intrinsic permeability of microcracks in porous solids: Analytical models and Lattice Boltzmann simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41, 1138-1154.	3.3	7
14	Micromechanics model for tortuosity and homogenized diffusion properties of porous materials with distributed micro-cracks. Proceedings in Applied Mathematics and Mechanics, 2011, 11, 555-556.	0.2	5
15	Sensitivity of Ultrasonic Coda Wave Interferometry to Material Damage—Observations from a Virtual Concrete Lab. Materials, 2021, 14, 4033.	2.9	5
16	Numerical Simulation-Based Damage Identification in Concrete. Modelling, 2021, 2, 355-369.	1.4	5
17	Diffusion in Fracturing Porous Materials: Characterizing Topological Effects using Cascade Micromechanics and Phase-Field Models. , 2013, , .		3
18	Cascade Continuum Micromechanics Model for the Effective Diffusivity of Porous Materials: Exponential Hierarchy across Cascade Levels. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 471-472.	0.2	3

JITHENDER J TIMOTHY

#	Article	IF	CITATIONS
19	Cascade Continuum Micromechanics model for the effective permeability of solids with distributed microcracks: Comparison with numerical homogenization. Mechanics of Materials, 2017, 115, 64-75.	3.2	3
20	Determination of homogenized diffusion properties in micro-cracked porous materials. Proceedings in Applied Mathematics and Mechanics, 2010, 10, 429-430.	0.2	2
21	A micromechanics model for FRC composites. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 543-544.	0.2	2
22	Reduced Order Multiscale Simulation of Diffuse Damage in Concrete. Materials, 2021, 14, 3830.	2.9	2
23	Hydraulic effects of fracture in brittle porous materials. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 135-136.	0.2	1
24	Computational Modeling of Concrete Degradation Due to Alkali Silica Reaction. , 2015, , .		1
25	Simulationâ€based investigation of the influence of the microâ€structure and disorder on damage evolution in concrete. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800380.	0.2	1
26	Multiscale modeling of Retinal Hypoxia due to Ageâ€related Macular Degeneration. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000297.	0.2	1
27	Computational analysis of the influence of drusen growth on the morphology of RPE due to Ageâ€related Macular Degeneration. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000298.	0.2	1
28	A Multiscale Model for High Performance FRC. RILEM Bookseries, 2018, , 97-105.	0.4	1
29	Numerical analysis of multiple ion species diffusion and Alkali-Silica Reaction in concrete. , 2014, , 789-796.		1
30	Modeling the effective permeability of microcracked materials using continuum and lattice micromechanics. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 555-556.	0.2	0
31	The effective thermal conductivity of carbon nanotube composites. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 613-614.	0.2	0
32	Multiscale modeling of distributed microcracking in concrete. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000228.	0.2	0
33	Multiscale modeling FRC Composites. , 0, , .		Ο
34	A Multiscale drusen growth model for Ageâ€related Macular Degeneration. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	0
35	Computational modelling of compressible cementitious composite materials. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	0
36	Damage identification in concrete using multiscale computational modeling and convolutional neural networks. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	0

#	Article	IF	CITATIONS
37	Computational Analysis of Concrete Flow in a Reinforced Bored Pile Using the Porous Medium Approach. Applied Mechanics, 2022, 3, 481-495.	1.5	0