
## Vanessa Vermeirssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341345/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A.<br>thaliana and S. lycopersicum. BMC Genomics, 2022, 23, 18.                                                                           | 1.2 | 19        |
| 2  | RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition. Science Advances, 2022, 8, .                                                                                                   | 4.7 | 15        |
| 3  | From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk<br>Neuroblastoma. Journal of Personalized Medicine, 2021, 11, 1286.                                                                        | 1.1 | 2         |
| 4  | Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Research, 2018, 46, 6480-6503.                                                                        | 6.5 | 33        |
| 5  | <i>Arabidopsis</i> Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress. Plant Cell, 2015, 26, 4656-4679.                                                             | 3.1 | 79        |
| 6  | Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate<br>Herbivore Spider Mite  Â. Plant Physiology, 2014, 164, 384-399.                                                                 | 2.3 | 151       |
| 7  | The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde<br>Regulation of the Oxidative Stress Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3472-3490.                                    | 3.1 | 293       |
| 8  | ldentification of cis-regulatory elements specific for different types of reactive oxygen species in<br>Arabidopsis thaliana. Gene, 2012, 499, 52-60.                                                                                   | 1.0 | 36        |
| 9  | Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering<br>of gene expression profiles constitute biological hypotheses for metazoan development. Molecular<br>BioSystems, 2009, 5, 1817.      | 2.9 | 23        |
| 10 | Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Research, 2007, 17, 1061-1071.                                                                                      | 2.4 | 87        |
| 11 | Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping. Nature Methods, 2007, 4, 659-664.                                                                                  | 9.0 | 62        |
| 12 | Gateway-Compatible Yeast One-Hybrid Screens. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4590.                                                                                                                                    | 0.2 | 67        |
| 13 | Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey proteinin vitro gastrointestinal digests. Journal of the Science of Food and Agriculture, 2005, 85, 399-405.                                     | 1.7 | 61        |
| 14 | In vitrointestinal transport and antihypertensive activity of ACE inhibitory pea and whey digests.<br>International Journal of Food Sciences and Nutrition, 2005, 56, 415-430.                                                          | 1.3 | 49        |
| 15 | Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition, 2004, 92, 357-366.                                                                                                                | 1.2 | 460       |
| 16 | A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie, 2004, 86, 231-239.                                                               | 1.3 | 107       |
| 17 | Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regulatory Peptides, 2004, 118, 105-109.                                                                         | 1.9 | 93        |
| 18 | Release of Angiotensin I Converting Enzyme (ACE) Inhibitory Activity during in Vitro Gastrointestinal<br>Digestion:Â from Batch Experiment to Semicontinuous Model. Journal of Agricultural and Food<br>Chemistry, 2003, 51, 5680-5687. | 2.4 | 64        |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. Journal of Proteomics, 2002, 51, 75-87.   | 2.4 | 198       |
| 20 | Development of a Six-Stage Culture System for Simulating the Gastrointestinal Microbiota of Weaned<br>Infants. Microbial Ecology in Health and Disease, 2001, 13, . | 3.8 | 2         |