
Johann P Reithmaier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 2004, 432, 197-200.	27.8	1,776
2	Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 2002, 65, .	3.2	933
3	Introduction to the Special Issue on Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-3.	2.9	539
4	Electron and HolegFactors and Exchange Interaction from Studies of the Exciton Fine Structure inIn0.60Ga0.40AsQuantum Dots. Physical Review Letters, 1999, 82, 1748-1751.	7.8	378
5	Optical Modes in Photonic Molecules. Physical Review Letters, 1998, 81, 2582-2585.	7.8	359
6	Long-wavelength InP-based quantum-dash lasers. IEEE Photonics Technology Letters, 2002, 14, 735-737.	2.5	166
7	Control of Vertically CoupledInGaAs/GaAsQuantum Dots with Electric Fields. Physical Review Letters, 2005, 94, 157401.	7.8	138
8	InP based lasers and optical amplifiers with wire-/dot-like active regions. Journal Physics D: Applied Physics, 2005, 38, 2088-2102.	2.8	134
9	Size Dependence of Confined Optical Modes in Photonic Quantum Dots. Physical Review Letters, 1997, 78, 378-381.	7.8	128
10	Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals. Applied Physics Letters, 2003, 82, 2767-2769.	3.3	128
11	Zeeman splitting of excitons and biexcitons in singleIn0.60Ga0.40As/GaAsself-assembled quantum dots. Physical Review B, 1998, 58, R7508-R7511.	3.2	121
12	Weak and strong coupling of photons and excitons in photonic dots. Physical Review B, 1998, 57, 9950-9956.	3.2	112
13	Telecom-wavelength (1.5 <i>μ</i> m) single-photon emission from InP-based quantum dots. Applied Physics Letters, 2013, 103, .	3.3	111
14	Transient electromagnetically induced transparency in self-assembled quantum dots. Applied Physics Letters, 2008, 92, .	3.3	93
15	Highly efficient GalnAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers. Applied Physics Letters, 2000, 77, 1419-1421.	3.3	92
16	Lasing in high-Q quantum-dot micropillar cavities. Applied Physics Letters, 2006, 89, 051107.	3.3	92
17	Optical Demonstration of a Crystal Band Structure Formation. Physical Review Letters, 1999, 83, 5374-5377.	7.8	91
18	Band offset in elastically strained InGaAs/GaAs multiple quantum wells determined by optical absorption and electronic Raman scattering. Applied Physics Letters, 1990, 56, 536-538.	3.3	89

#	Article	IF	CITATIONS
19	On the nature of quantum dash structures. Journal of Applied Physics, 2004, 95, 6103-6111.	2.5	87
20	High-performance GalnAs/GaAs quantum-dot lasers based on a single active layer. Applied Physics Letters, 1999, 74, 2915-2917.	3.3	86
21	Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers. Applied Physics Letters, 2002, 81, 217-219.	3.3	86
22	Size control of InAs quantum dashes. Applied Physics Letters, 2005, 86, 253112.	3.3	84
23	Er doped nanocrystalline ZnO planar waveguide structures for 1.55 μm amplifier applications. Applied Physics Letters, 1999, 75, 2005-2007.	3.3	83
24	Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers. Applied Physics Letters, 1999, 74, 483-485.	3.3	82
25	Line narrowing in single semiconductor quantum dots: Toward the control of environment effects. Physical Review B, 2002, 66, .	3.2	78
26	Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Applied Physics Letters, 2005, 86, 111105.	3.3	78
27	Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm. IEEE Photonics Technology Letters, 2003, 15, 563-565.	2.5	77
28	InAs/InP Quantum-Dash Lasers and Amplifiers. Proceedings of the IEEE, 2007, 95, 1779-1790.	21.3	76
29	Epitaxial growth of 1.55μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications. Journal of Crystal Growth, 2003, 251, 248-252.	1.5	64
30	High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications. IEEE Photonics Technology Letters, 2001, 13, 764-766.	2.5	59
31	Strong exciton–photon coupling in semiconductor quantum dot systems. Semiconductor Science and Technology, 2008, 23, 123001.	2.0	59
32	Optical properties ofGa0.8In0.2As/GaAs surface quantum wells. Physical Review B, 1993, 48, 14741-14744.	3.2	58
33	High gain 1.55â€,μm diode lasers based on InAs quantum dot like active regions. Applied Physics Letters, 2011, 98, .	3.3	58
34	The role of auger recombination in inas 1.3-μm quantum-dot lasers investigated using high hydrostatic pressure. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1300-1307.	2.9	57
35	Lateral coupling – a material independent way to complex coupled DFB lasers. Optical Materials, 2001, 17, 19-25.	3.6	52
36	Investigation of the critical layer thickness in elastically strained InGaAs/GaAlAs quantum wells by photoluminescence and transmission electron microscopy. Applied Physics Letters, 1989, 54, 48-50.	3.3	51

#	Article	IF	CITATIONS
37	Polariton-polariton scattering in semiconductor microcavities: Experimental observation of thresholdlike density dependence. Physical Review B, 2000, 61, R2409-R2412.	3.2	51
38	Influence of the strain on the formation of GaInAs/GaAs quantum structures. Journal of Crystal Growth, 2006, 286, 6-10.	1.5	49
39	Edge-emitting GalnAs-AlGaAs microlasers. IEEE Photonics Technology Letters, 1999, 11, 943-945.	2.5	48
40	Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100). Applied Physics Letters, 2010, 96, 191903.	3.3	48
41	Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities. Physical Review B, 1997, 56, R4367-R4370.	3.2	47
42	Influence of doping density on electron dynamics in GaAsâ^•AlGaAs quantum cascade lasers. Journal of Applied Physics, 2006, 99, 103106.	2.5	47
43	Temperature stability of static and dynamic properties of 155 µm quantum dot lasers. Optics Express, 2018, 26, 6056.	3.4	47
44	Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications. Applied Surface Science, 2014, 297, 95-102.	6.1	46
45	Bioproperties of nanocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials, 2007, 16, 735-739.	3.9	45
46	Coherent photonic coupling of semiconductor quantum dots. Optics Letters, 2006, 31, 1738.	3.3	43
47	Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Applied Physics Letters, 2014, 105, 021909.	3.3	43
48	Indium desorption during MBE growth of strained InGaAs layers. Journal of Crystal Growth, 1991, 111, 407-412.	1.5	42
49	High-temperature properties of GalnAs/AlGaAs lasers with improved carrier confinement by short-period superlattice quantum well barriers. Applied Physics Letters, 1998, 73, 2863-2865.	3.3	41
50	Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55μm. Applied Physics Letters, 2006, 89, 081102.	3.3	41
51	Large linewidth reduction in semiconductor lasers based on atom-like gain material. Optica, 2019, 6, 1071.	9.3	41
52	Experimental evidence for the transition from two- to three-dimensional behavior of excitons in quantum-well structures. Physical Review B, 1991, 43, 4933-4938.	3.2	40
53	High-performance 980 nm quantum dot lasers for high-power applications. Electronics Letters, 2001, 37, 353.	1.0	40
54	Multiple wavelength amplification in wide band high power 1550â€nm quantum dash optical amplifier. Electronics Letters, 2004, 40, 760.	1.0	40

#	Article	IF	CITATIONS
55	Photoreflectance-probed excited states in InAsâ^•InGaAlAs quantum dashes grown on InP substrate. Applied Physics Letters, 2006, 89, 031908.	3.3	40
56	Telecom wavelength single quantum dots with very small excitonic fine-structure splitting. Applied Physics Letters, 2018, 112, .	3.3	40
57	Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1015-1026.	2.9	38
58	Tribological properties of ultrananocrystalline diamond films in various test atmosphere. Tribology International, 2011, 44, 2042-2049.	5.9	38
59	High-density 1.54 μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity. Journal of Crystal Growth, 2015, 425, 299-302.	1.5	38
60	Single-photon emission of InAs/InP quantum dashes at 1.55 <i>μ</i> m and temperatures up to 80 K. A Physics Letters, 2016, 108, .	Apglied	38
61	Strong variation of the excitongfactors in self-assembledIn0.60Ga0.40Asquantum dots. Physical Review B, 1999, 60, R8481-R8484.	3.2	37
62	InAsâ^•InP 1550â€nm quantum dash semiconductor optical amplifiers. Electronics Letters, 2002, 38, 1350.	1.0	37
63	Radiative emission dynamics of quantum dots in a single cavity micropillar. Physical Review B, 2006, 74,	3.2	37
64	Focused ion-beam implantation induced thermal quantum-well intermixing for monolithic optoelectronic device integration. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 595-605.	2.9	36
65	Optical gain properties of InAsâ^InAlGaAsâ^InP quantum dash structures with a spectral gain bandwidth of more than 300nm. Applied Physics Letters, 2006, 89, 061107.	3.3	36
66	Highâ€Purity Triggered Singleâ€Photon Emission from Symmetric Single InAs/InP Quantum Dots around the Telecom Câ€Band Window. Advanced Quantum Technologies, 2020, 3, 1900082.	3.9	35
67	Optical spectroscopy of single InAs/InGaAs quantum dots in a quantum well. Applied Physics Letters, 2002, 81, 4898-4900.	3.3	34
68	Exciton-photon coupling in photonic wires. Physical Review B, 1998, 57, R6807-R6810.	3.2	33
69	Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature. Optics Express, 2013, 21, 26786.	3.4	33
70	Exciton and biexciton dynamics in single self-assembled InAs/InGaAlAs/InP quantum dash emitting near 1.55 <i>î¼</i> m. Applied Physics Letters, 2013, 103, .	3.3	33
71	High Speed 1.55 μm InAs/InGaAlAs/InP Quantum Dot Lasers. IEEE Photonics Technology Letters, 2014, 26, 11-13.	2.5	33
72	Magneto-optical investigations of single self-assembled InAs/InGaAlAs quantum dashes. Applied Physics Letters, 2003, 82, 2799-2801.	3.3	32

#	Article	IF	CITATIONS
73	Cross-gain modulation in inhomogeneously broadened gain spectra of InP-Based 1550 nm quantum dash optical amplifiers: Small-signal bandwidth dependence on wavelength detuning. Applied Physics Letters, 2003, 82, 4660-4662.	3.3	32
74	Temperature-Insensitive High-Speed Directly Modulated 1.55- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math </inline-formula> Quantum Dot Lasers. IEEE Photonics Technology Letters, 2016, 28, 2451-2454.	2.5	32
75	Laser emission from photonic dots. Applied Physics Letters, 1997, 71, 488-490.	3.3	31
76	Enhanced direct-modulated bandwidth of 37â€GHz by a multi-section laser with a coupled-cavity-injection-grating design. Electronics Letters, 2003, 39, 1592.	1.0	31
77	High frequency characteristics of InAs/GalnAs quantum dot distributed feedback lasers emitting at 1.3 [micro sign]m. Electronics Letters, 2001, 37, 1223.	1.0	30
78	Photoreflectance spectroscopy of vertically coupled InGaAs/GaAs double quantum dots. Solid State Communications, 2001, 117, 401-406.	1.9	30
79	High-power quantum dot lasers with improved temperature stability of emission wavelength for uncooled pump sources. Electronics Letters, 2005, 41, 1125.	1.0	30
80	High-Speed Low-Noise InAs/InAlGaAs/InP 1.55-\$mu{m m}\$ Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2012, 24, 809-811.	2.5	30
81	Optically probed wetting layer in InAs/InGaAlAs/InP quantum-dash structures. Applied Physics Letters, 2005, 86, 101904.	3.3	29
82	Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials, 2009, 18, 895-898.	3.9	29
83	Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity. Applied Physics Letters, 2013, 103, .	3.3	29
84	High-power 980â€nm quantum dot broad area lasers. Electronics Letters, 2003, 39, 1655.	1.0	28
85	Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy. Journal of Applied Physics, 2013, 114, .	2.5	28
86	Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures. Physical Review B, 2017, 96, .	3.2	28
87	Dynamics of carrier-capture processes inGaxIn1â^xAs/GaAs near-surface quantum wells. Physical Review B, 1995, 51, 4657-4660.	3.2	27
88	Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.31¼m. Journal of Crystal Growth, 2003, 251, 742-747.	1.5	27
89	High-gain wavelength-stabilized 1.55 <i>μ</i> m InAs/InP(100) based lasers with reduced number of quantum dot active layers. Applied Physics Letters, 2013, 102, .	3.3	27
90	Large anisotropy of electron and hole <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi>factors in infrared-emitting InAs/InAlGaAs self-assembled quantum dots. Physical Review B, 2016, 93, .</mml:math 	3.2	27

#	Article	IF	CITATIONS
91	Minimum feature sizes and ion beam profile for a focused ion beam system with post-objective lens retarding and acceleration mode. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 3518.	1.6	26
92	Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities. Applied Physics Letters, 2017, 110, .	3.3	26
93	Widely tunable narrow-linewidth 1.5 <i>î¼</i> m light source based on a monolithically integrated quantum dot laser array. Applied Physics Letters, 2017, 110, .	3.3	26
94	InAs/GaInAs quantum dot DFB lasers emitting at 1.3 [micro sign]m. Electronics Letters, 2001, 37, 634.	1.0	25
95	Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots. IEEE Photonics Technology Letters, 2002, 14, 1246-1248.	2.5	25
96	High-Power Tunnel-Injection 1060-nm InGaAs–(Al)GaAs Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2009, 21, 999-1001.	2.5	25
97	Influence of electronic coupling on the radiative lifetime in the (In,Ga)As/GaAs quantum dot–quantum well system. Physical Review B, 2012, 85, .	3.2	25
98	Rabi oscillations in a room-temperature quantum dash semiconductor optical amplifier. Physical Review B, 2014, 90, .	3.2	25
99	Importance of Auger recombination in InAs 1.3â€[micro sign]m quantum dot lasers. Electronics Letters, 2003, 39, 58.	1.0	24
100	Gain, index variation, and linewidth-enhancement factor in 980-nm quantum-well and quantum-dot lasers. IEEE Journal of Quantum Electronics, 2005, 41, 117-126.	1.9	24
101	Plasma amination of ultrananocrystalline diamond/amorphous carbon composite films for the attachment of biomolecules. Diamond and Related Materials, 2011, 20, 254-258.	3.9	24
102	Low temperature growth of nanocrystalline and ultrananocrystalline diamond films: A comparison. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1664-1674.	1.8	24
103	All-optical signal processing at 10 GHz using a photonic crystal molecule. Applied Physics Letters, 2013, 103, .	3.3	24
104	Confinement of light hole valenceâ€band states in pseudomorphic InGaAs/Ga(Al)As quantum wells. Applied Physics Letters, 1990, 57, 957-959.	3.3	23
105	22-GHz Modulation Bandwidth of Long Cavity DBR Laser by Using a Weakly Laterally Coupled Grating Fabricated by Focused Ion Beam Lithography. IEEE Photonics Technology Letters, 2004, 16, 18-20.	2.5	23
106	Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions. Journal of Crystal Growth, 2005, 278, 775-779.	1.5	23
107	Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals. Applied Physics Letters, 2005, 87, 121105.	3.3	23
108	Thermal quenching of photoluminescence from InAsâ^•In0.53Ga0.23Al0.24Asâ^•InP quantum dashes with different sizes. Applied Physics Letters, 2006, 89, 151902.	3.3	23

#	Article	IF	CITATIONS
109	Optical properties of low-strained InxGa1â^'xAsâ^GaAs quantum dot structures at the two-dimensional–three-dimensional growth transition. Journal of Applied Physics, 2006, 100, 013503.	2.5	23
110	A nearly instantaneous gain response in quantum dash based optical amplifiers. Applied Physics Letters, 2010, 97, .	3.3	23
111	Low-density InP-based quantum dots emitting around the 1.5 <i>μ</i> m telecom wavelength range. Applied Physics Letters, 2014, 104, .	3.3	23
112	Electron and hole <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi>factors in InAs/InAlGaAs self-assembled quantum dots emitting at telecom wavelengths. Physical Review B, 2015, 92, .</mml:math 	3.2	23
113	Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors. Electronics Letters, 1999, 35, 154.	1.0	22
114	Single-mode distributed feedback and microlasers based on quantum-dot gain material. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 1035-1044.	2.9	22
115	Deeply etched two-dimensional photonic crystals fabricated on GaAs/AlGaAs slab waveguides by using chemically assisted ion beam etching. Microelectronic Engineering, 2002, 61-62, 875-880.	2.4	22
116	Static and dynamic properties of laterally coupled DFB lasers based on InAsâ^•InP QDash structures. Electronics Letters, 2005, 41, 808.	1.0	22
117	Complex (As2S3)(100â^')(AgI) chalcogenide glasses for gas sensors. Sensors and Actuators B: Chemical, 2009, 143, 395-399.	7.8	22
118	Phonon-assisted radiative recombination of excitons confined in strongly anisotropic nanostructures. Physical Review B, 2014, 90, .	3.2	22
119	Incorporation and study of SiV centers in diamond nanopillars. Diamond and Related Materials, 2016, 64, 64-69.	3.9	22
120	Patterning of the surface termination of ultrananocrystalline diamond films for guided cell attachment and growth. Surface and Coatings Technology, 2017, 321, 229-235.	4.8	22
121	Gallium desorption during growth of (Al,Ga)As by molecular beam epitaxy. Applied Physics Letters, 1992, 61, 1222-1224.	3.3	21
122	Photonic defect states in chains of coupled microresonators. Physical Review B, 2001, 64, .	3.2	21
123	Recent advances in semiconductor quantum-dot lasers. Comptes Rendus Physique, 2003, 4, 611-619.	0.9	21
124	Recombination mechanisms in InAs/InP quantum dash lasers studied using high hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3427-3431.	1.5	21
125	Photoreflectance determination of the wetting layer thickness in the InxGa1â^'xAsâ^•GaAs quantum dot system for a broad indium content range of 0.3–1. Journal of Applied Physics, 2006, 100, 103529.	2.5	21
126	Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm. Applied Physics Letters, 2015, 106, 053114.	3.3	21

#	Article	IF	CITATIONS
127	InP-based single-photon sources operating at telecom C-band with increased extraction efficiency. Applied Physics Letters, 2021, 118, .	3.3	21
128	First order gain oupled GaInAs/GaAs distributed feedback laser diodes patterned by focused ion beam implantation. Applied Physics Letters, 1996, 69, 1906-1908.	3.3	20
129	High-frequency properties of 1.55 μ m laterally complex coupled distributed feedback lasers fabricated by focused-ion-beam lithography. Applied Physics Letters, 2000, 77, 325-327.	3.3	20
130	High Performance 1.3 µm Quantum-Dot Lasers. Japanese Journal of Applied Physics, 2002, 41, 1158-1161.	1.5	20
131	InP-based quantum dash lasers for wide gain bandwidth applications. Journal of Crystal Growth, 2005, 278, 346-350.	1.5	20
132	On the development of the morphology of ultrananocrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 70-80.	1.8	20
133	Coherent control in a semiconductor optical amplifier operating at room temperature. Nature Communications, 2014, 5, 5025.	12.8	20
134	Deterministic Arrays of Epitaxially Grown Diamond Nanopyramid <i>s</i> with Embedded Siliconâ€Vacancy Centers. Advanced Optical Materials, 2019, 7, 1800715.	7.3	20
135	InGaAs/AlGaAs quantum dot DFB lasers operating up to 213°C. Electronics Letters, 1999, 35, 2036.	1.0	20
136	Highly Resolved Maskless Patterning on InP by Focused Ion Beam Enhanced Wet Chemical Etching. Japanese Journal of Applied Physics, 1999, 38, 6142-6144.	1.5	19
137	1.55 μm single mode lasers with complex coupled distributed feedback gratings fabricated by focused ion beam implantation. Applied Physics Letters, 1999, 75, 1491-1493.	3.3	19
138	Near-field mapping of the electromagnetic field in confined photon geometries. Physical Review B, 2002, 66, .	3.2	19
139	High brightness GalnAs/(Al)GaAs quantum-dot tapered lasers at 980 nm with high wavelength stability. Applied Physics Letters, 2004, 84, 2238-2240.	3.3	19
140	Time-resolved chirp in an InAsâ^•InP quantum-dash optical amplifier operating with 10Gbitâ^•s data. Applied Physics Letters, 2005, 87, 021104.	3.3	19
141	GalnAs/(Al)GaAs quantum-dot lasers with high wavelength stability. Semiconductor Science and Technology, 2008, 23, 085022.	2.0	19
142	Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition. AIP Advances, 2012, 2, .	1.3	19
143	50 mW CW-operated single-mode surface-emitting AlGaAs lasers with 45 degrees total reflection mirrors. IEEE Photonics Technology Letters, 1992, 4, 698-700.	2.5	18
144	Nanocrystalline diamond/amorphous carbon composite coatings for biomedical applications. Diamond and Related Materials, 2008, 17, 882-887.	3.9	18

#	Article	IF	CITATIONS
145	Investigation of the UV/O ₃ treatment of ultrananocrystalline diamond films. Surface and Interface Analysis, 2010, 42, 1152-1155.	1.8	18
146	Electrical properties of ultrananocrystalline diamond/amorphous carbon nanocomposite films. Diamond and Related Materials, 2010, 19, 449-452.	3.9	18
147	Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes. Physical Review B, 2016, 94, .	3.2	18
148	12 [micro sign]m long edge-emitting quantum-dot laser. Electronics Letters, 2001, 37, 690.	1.0	17
149	On the tunnel injection of excitons and free carriers from In0.53Ga0.47Asâ^•In0.53Ga0.23Al0.24As quantum well to InAsâ^•In0.53Ga0.23Al0.24As quantum dashes. Applied Physics Letters, 2006, 89, 061902.	3.3	17
150	Widely tunable single-mode quantum cascade lasers with two monolithically coupled Fabry-Pérot cavities. Applied Physics Letters, 2006, 89, 241126.	3.3	17
151	Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier. Optics Express, 2008, 16, 19072.	3.4	17
152	Nanocrystalline diamond containing hydrogels and coatings for acceleration of osteogenesis. Diamond and Related Materials, 2011, 20, 165-169.	3.9	17
153	Height-driven linear polarization of the surface emission from quantum dashes. Semiconductor Science and Technology, 2012, 27, 105022.	2.0	17
154	Highâ€power singleâ€mode AlGaAs lasers with bentâ€waveguide nonabsorbing etched mirrors. Journal of Applied Physics, 1992, 72, 2131-2135.	2.5	16
155	Transform-limited picosecond optical pulses from a mode-locked InGaAs/AlGaAs QW laser with integrated passive waveguide cavity and QW modulator. IEEE Photonics Technology Letters, 1993, 5, 896-899.	2.5	16
156	First order gain and index coupled distributed feedback lasers in ZnSeâ€based structures with finely tunable emission wavelengths. Applied Physics Letters, 1996, 68, 599-601.	3.3	16
157	Enhanced exciton-phonon scattering inInxGa1â^'xAs/GaAsquantum wires. Physical Review B, 1997, 56, 12096-12099.	3.2	16
158	GaAsâ^•AlGaAs quantum cascade micro lasers based on monolithic semiconductor-air Bragg mirrors. Electronics Letters, 2004, 40, 120.	1.0	16
159	Spectrally resolved dynamics of inhomogeneously broadened gain in InAsâ^•InP1550nm quantum-dash lasers. Applied Physics Letters, 2004, 85, 5505-5507.	3.3	16
160	Device performance and wavelength tuning behavior of ultra-short quantum-cascade microlasers with deeply etched Bragg-mirrors. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1048-1054.	2.9	16
161	Modulation speed enhancement by coupling to higher order resonances: a road towards 40 GHz bandwidth lasers on InP. , 0, , .		16
162	Dependence of saturation effects on electron confinement and injector doping in GaAsâ^•Al0.45Ga0.55As quantum-cascade lasers. Applied Physics Letters, 2006, 88, 251109.	3.3	16

#	Article	IF	CITATIONS
163	Microthermography of diode lasers: The impact of light propagation on image formation. Journal of Applied Physics, 2009, 105, 014502.	2.5	16
164	Characterization of pulsed laser deposited chalcogenide thin layers. Applied Surface Science, 2009, 255, 5318-5321.	6.1	16
165	Influence of the surface termination of ultrananocrystalline diamond/amorphous carbon composite films on their interaction with neurons. Diamond and Related Materials, 2012, 26, 60-65.	3.9	16
166	Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the presence of nonresonant nonlinearities. Physical Review B, 2015, 91, .	3.2	16
167	Interface structure and strain state of InAs nano-clusters embedded in silicon. Acta Materialia, 2015, 90, 133-139.	7.9	16
168	Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures. Optics Express, 2017, 25, 27262.	3.4	16
169	Novel Ultra Localized and Dense Nitrogen Delta-Doping in Diamond for Advanced Quantum Sensing. Nano Letters, 2020, 20, 3192-3198.	9.1	16
170	Focused ion beam implantation for opto- and microelectronic devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2562.	1.6	15
171	Laterally coupled DBR laser emitting at 1.55 μm fabricated by focused ion beam lithography. IEEE Photonics Technology Letters, 2002, 14, 1037-1039.	2.5	15
172	1.54â€[micro sign]m singlemode InP-based Q-dash lasers. Electronics Letters, 2003, 39, 985.	1.0	15
173	High-Speed Coupled-Cavity Injection Grating Lasers With Tailored Modulation Transfer Functions. IEEE Photonics Technology Letters, 2004, 16, 1997-1999.	2.5	15
174	Semiconductor quantum dots devices: Recent advances and application prospects. Physica Status Solidi (B): Basic Research, 2006, 243, 3981-3987.	1.5	15
175	Site-controlled InAs quantum dots grown on a 55 nm thick GaAs buffer layer. Applied Physics Letters, 2009, 95, 243106.	3.3	15
176	Influence of the nucleation density on the structure and mechanical properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2009, 18, 151-154.	3.9	15
177	the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1.55</mml:mn><mml:mspace width="0.28em" /><mml:mi>1¼<</mml:mi><mml:mi mathyariant="normal">m</mml:mi </mml:mspace </mml:mrow> telecom wavelength. Physical Review B.</mml:math 	3.2	15
178	2017, 96, . Quantum-dot microlasers. Electronics Letters, 2000, 36, 1548.	1.0	14
179	Efficient light transmission through InP-based photonic crystal waveguides. Electronics Letters, 2002, 38, 178.	1.0	14
180	Time-resolved photoluminescence spectroscopy of an InGaAs/GaAs quantum well-quantum dots tunnel injection structure. Applied Physics Letters, 2010, 96, .	3.3	14

#	Article	IF	CITATIONS
181	Growth of InAs quantum dots and dashes on silicon substrates: Formation and characterization. Journal of Crystal Growth, 2011, 323, 422-425.	1.5	14
182	Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers. Applied Physics Letters, 2014, 104, .	3.3	14
183	Bent laser cavity based on 2D photonic crystal waveguide. Electronics Letters, 2000, 36, 324.	1.0	13
184	Complex coupled distributed-feedback and Bragg-reflector lasers for monolithic device integration based on focused-ion-beam technology. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 306-311.	2.9	13
185	Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy. Applied Physics Letters, 2001, 79, 1885-1887.	3.3	13
186	Photoreflectance investigation of InAs quantum dashes embedded in In0.53Ga0.47Asâ^•In0.53Ga0.23Al0.24As quantum well grown on InP substrate. Applied Physics Letters, 2006, 88, 141915.	3.3	13
187	Influence of geometric disorder on the band structure of a photonic crystal: Experiment and theory. Physical Review B, 2007, 75, .	3.2	13
188	UNCD/a-C nanocomposite films for biotechnological applications. Surface and Coatings Technology, 2011, 206, 667-675.	4.8	13
189	Reactive ion etching of nanocrystalline diamond for the fabrication of one-dimensional nanopillars. Diamond and Related Materials, 2013, 36, 58-63.	3.9	13
190	Direct growth of III–V quantum dots on silicon substrates: structural and optical properties. Semiconductor Science and Technology, 2013, 28, 094004.	2.0	13
191	Excitonic wave packets inIn0.135Ga0.865As/GaAs quantum wires. Physical Review B, 1997, 55, 9290-9293.	3.2	12
192	Preâ€patterned silicon substrates for the growth of Ill–V nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2402-2410.	1.8	12
193	Grafting of manganese phthalocyanine on nanocrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2048-2054.	1.8	12
194	Plasma surface fluorination of ultrananocrystalline diamond films. Surface and Coatings Technology, 2016, 302, 448-453.	4.8	12
195	Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths. Physical Review B, 2018, 97, .	3.2	12
196	Carrier dynamics in a tunneling injection quantum dot semiconductor optical amplifier. Physical Review B, 2018, 98, .	3.2	12
197	Functionalised phosphonate ester supported lanthanide (Ln = La, Nd, Dy, Er) complexes. Dalton Transactions, 2020, 49, 16683-16692.	3.3	12
198	GalnAs/GaAs quantum wire laser structures with strong gain coupling defined by reactive ion etching. Electronics Letters, 1995, 31, 457-458.	1.0	11

#	Article	IF	CITATIONS
199	Semiconductor photonic molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 616-624.	2.7	11
200	Low threshold high efficiency MBE grown GaInAs/(Al)GaAs quantum dot lasers emitting at 980nm. Journal of Crystal Growth, 2001, 227-228, 1151-1154.	1.5	11
201	Wavelength stabilized single-mode lasers by coupled micro-square resonators. IEEE Photonics Technology Letters, 2003, 15, 377-379.	2.5	11
202	Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAsâ^•GaAs quantum dots. Applied Physics Letters, 2007, 91, 051126.	3.3	11
203	Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm. Optics Express, 2008, 16, 2141.	3.4	11
204	Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature. Nanoscale Research Letters, 2012, 7, 493.	5.7	11
205	Investigation of <scp>NV</scp> centers in nano―and ultrananocrystalline diamond pillars. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2066-2073.	1.8	11
206	Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces. Materials Science and Engineering C, 2016, 64, 278-285.	7.3	11
207	Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors. Microelectronic Engineering, 2001, 57-58, 593-598.	2.4	10
208	Two-dimensional photonic crystal laser mirrors. Semiconductor Science and Technology, 2001, 16, 227-232.	2.0	10
209	Highly efficient and compact photonic wire splitters on GaAs. Applied Physics Letters, 2007, 91, 221102.	3.3	10
210	1.3-\$mu\$m Two-Section DBR Lasers Based on Surface Defined Gratings for High-Speed Telecommunication. IEEE Photonics Technology Letters, 2011, 23, 411-413.	2.5	10
211	Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers. Applied Physics Letters, 2011, 98, .	3.3	10
212	Stability of the surface termination of differently modified ultrananocrystalline diamond/amorphous carbon composite films. Surface and Coatings Technology, 2012, 209, 184-189.	4.8	10
213	Nanostructured hybrid material based on highly mismatched <scp>III</scp> – <scp>V</scp> nanocrystals fully embedded in silicon. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 817-822.	1.8	10
214	Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 µm emission. AIP Advances, 2017, 7, 015117.	1.3	10
215	Ultra-fast charge carrier dynamics across the spectrum of an optical gain media based on InAs/AlGaInAs/InP quantum dots. AIP Advances, 2017, 7, 035122.	1.3	10
216	Confinement regime in self-assembled InAs/InAlGaAs/InP quantum dashes determined from exciton and biexciton recombination kinetics. Applied Physics Letters, 2017, 111, 253106.	3.3	10

#	Article	IF	CITATIONS
217	Antimicrobial propensity of ultrananocrystalline diamond films with embedded silver nanodroplets. Diamond and Related Materials, 2019, 93, 168-178. Optical and Electronic Properties of Symmetric Amml:math	3.9	10
218	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> < mml:mrow> < mml:mi> In < /mml:mi> < mml:mi> As < /mml:mi> < /mml:mrow> < mml:mo> / < /mml:mo stretchy="false"> (< /mml:mo> < mml:mrow> < mml:mrow> < mml:mi> In < /mml:mi> < mml:mo> , < /mml:mo> < mml:mspa		
219	Characterization of (In,Ga)As/GaAs strained-layer multiple quantum wells with high-resolution X-ray diffraction and computer simulations. Applied Surface Science, 1991, 50, 92-96.	6.1	9
220	Growth studies of (Al,Ga,In)As on InP by molecular beam epitaxy. Journal of Crystal Growth, 1993, 127, 755-758.	1.5	9
221	Optical and structural properties of GaInAs/InP single quantum wells grown by solid-source MBE with a GaP decomposition source. Journal of Crystal Growth, 1998, 191, 607-612.	1.5	9
222	Far-field emission pattern and photonic band structure in one-dimensional photonic crystals made from semiconductor microcavities. Physical Review B, 1999, 59, 10251-10254.	3.2	9
223	Grazing-incidence diffraction strain analysis of a laterally-modulated multiquantum well system produced by focused-ion-beam implantation. Applied Physics Letters, 2000, 77, 4277-4279.	3.3	9
224	Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9â€[micro sign]m range. Electronics Letters, 2008, 44, 527.	1.0	9
225	Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser. Optics Express, 2012, 20, 5987.	3.4	9
226	Exciton spin relaxation in InAs/InGaAlAs/InP(001) quantum dashes emitting near 1.55μm. Applied Physics Letters, 2016, 109, 193108.	3.3	9
227	Growth and optical characteristics of IAAs quantum dot structures with tunnel injection quantum wells for 1.55â€~aml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll">< mml:mirow> < mml:mi mathvariant="normal">μ< /mml:mi> m high-speed lasers. Journal of Crystal	1.5	9
228	Growth, 2018, 491, 2023. Homoepitaxial Diamond Structures with Incorporated SiV Centers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800371.	1.8	9
229	Excited states of neutral and charged excitons in single strongly asymmetric InP-based nanostructures emitting in the telecom C band. Physical Review B, 2019, 100, .	3.2	9
230	Mode properties of telecom wavelength InP-based high-(Q/V) L4/3 photonic crystal cavities. Nanotechnology, 2020, 31, 315703.	2.6	9
231	Magneto-Optical Characterization of Trions in Symmetric InP-Based Quantum Dots for Quantum Communication Applications. Materials, 2021, 14, 942.	2.9	9
232	Azido-Functionalized Aromatic Phosphonate Esters in ^R POSS-Cage-Supported Lanthanide Ion (Ln = La, Nd, Dy, Er) Coordination. Inorganic Chemistry, 2021, 60, 5297-5309.	4.0	9
233	1.5-μm Indium Phosphide-Based Quantum Dot Lasers and Optical Amplifiers: The Impact of Atom-Like Optical Gain Material for Optoelectronics Devices. IEEE Nanotechnology Magazine, 2021, 15, 23-36.	1.3	9

234Gain-modulated second order distributed feedback gratings fabricated by maskless focused ion beam
implantation in GalnAsP heterostructures. Microelectronic Engineering, 1995, 27, 343-346.2.48

#	Article	IF	CITATIONS
235	Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs. Applied Physics Letters, 1997, 70, 2828-2830.	3.3	8
236	Carrier and light trapping in graded quantum-well laser structures. Applied Physics Letters, 2000, 76, 3540-3542.	3.3	8
237	Semiconductor lasers with 2-D-photonic crystal mirrors based on a wet-oxidized Al2O3-mask. IEEE Photonics Technology Letters, 2001, 13, 406-408.	2.5	8
238	Photonic crystal waveguides with propagation losses in the 1â€,dBâ^•mm range. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3356.	1.6	8
239	DFB Lasers With Deeply Etched Vertical Grating Based on InAs–InP Quantum-Dash Structures. IEEE Photonics Technology Letters, 2007, 19, 264-266.	2.5	8
240	Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime. Optics Express, 2012, 20, 347.	3.4	8
241	Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment. Journal of Applied Physics, 2016, 120, .	2.5	8
242	Control of Dynamic Properties of InAs/InAlGaAs/InP Hybrid Quantum Wellâ€Quantum Dot Structures Designed as Active Parts of 1.55 μm Emitting Lasers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700455.	1.8	8
243	Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 1¼m. Applied Physics Letters, 2018, 112, 221901.	3.3	8
244	Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities. Micromachines, 2020, 11, 1080.	2.9	8
245	Fabrication of highly dense arrays of nanocrystalline diamond nanopillars with integrated silicon-vacancy color centers during the growth. Optical Materials Express, 2019, 9, 4545.	3.0	8
246	A closed UHV focused ion beam patterning and MBE regrowth technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 208-213.	3.5	7
247	1.55 μ m single-mode lasers with combined gain coupling and lateral carrier confinement by focused ion-beam implantation. Applied Physics Letters, 1998, 73, 2703-2705.	3.3	7
248	Semiconductor quantum dots - A new class of gain materials for advanced optoelectronics. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2003, 19, 24-29.	0.4	7
249	Strong and weak coupling of single quantum dot excitons in pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 2224-2228.	1.5	7
250	Investigation of strong coupling between single quantum dot excitons and single photons in pillar microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 471-475.	2.7	7
251	Self-gating in an electron Y-branch switch at room temperature. Applied Physics Letters, 2006, 89, 122109.	3.3	7
252	Modal Analysis of Large Spot Size, Low Output Beam Divergence Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2007, 19, 916-918.	2.5	7

#	Article	IF	CITATIONS
253	Spectroscopic studies of (AsSe)100â~'xAgx thin films. Applied Surface Science, 2009, 255, 9691-9694.	6.1	7
254	Nonlinear pulse propagation in a quantum dot laser. Optics Express, 2013, 21, 5715.	3.4	7
255	Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses. Optica, 2016, 3, 570.	9.3	7
256	Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system. Applied Physics Letters, 2017, 110, .	3.3	7
257	Ramsey fringes in a room-temperature quantum-dot semiconductor optical amplifier. Physical Review B, 2018, 97, .	3.2	7
258	On the principle operation of tunneling injection quantum dot lasers. Progress in Quantum Electronics, 2022, 81, 100362.	7.0	7
259	High resolution focussed ion beam implantation with post objective lens retarding and acceleration. Microelectronic Engineering, 1994, 23, 119-122.	2.4	6
260	First-order gain-coupled (Ga,In)As/(Al,Ga)As distributed feedback lasers by focused ion beam implantation and in situ overgrowth. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 2714.	1.6	6
261	Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams. IEEE Photonics Technology Letters, 1995, 7, 845-847.	2.5	6
262	Hydride vapour phase epitaxy for nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 51, 238-241.	3.5	6
263	Magnetic-field dependence of the exciton-photon coupling in structured photonic cavities. Physical Review B, 1999, 60, 10695-10698.	3.2	6
264	Improved carrier confinement in GaInAs/AlGaAs lasers by MBE grown short period superlattice quantum well barriers. Journal of Crystal Growth, 1999, 201-202, 914-918.	1.5	6
265	Photon confinement effects — from physics to applications. Microelectronic Engineering, 2000, 53, 21-28.	2.4	6
266	Nanoscale patterning by focused ion beam enhanced etching for optoelectronic device fabrication. Microelectronic Engineering, 2001, 57-58, 891-896.	2.4	6
267	Cross-saturation dynamics in InAsâ^•InP quantum dash optical amplifiers operating at 1550â€nm. Electronics Letters, 2005, 41, 266.	1.0	6
268	Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature. Applied Physics Letters, 2006, 89, 191113.	3.3	6
269	Singlemode tapered quantum dot laser diodes with monolithically integrated feedback gratings. Electronics Letters, 2007, 43, 926.	1.0	6
270	Contactless electroreflectance of InAsâ^•In0.53Ga0.23Al0.24As quantum dashes grown on InP substrate: Analysis of the wetting layer transition. Journal of Applied Physics, 2007, 101, 013507.	2.5	6

#	Article	IF	CITATIONS
271	Control of dot geometry and photoluminescence linewidth of InGaAs/GaAs quantum dots by growth conditions. Journal of Crystal Growth, 2009, 311, 1783-1786.	1.5	6
272	1100 nm InGaAs/(Al)GaAs quantum dot lasers for high-power applications. Journal Physics D: Applied Physics, 2011, 44, 145104.	2.8	6
273	On the mechanisms of energy transfer between quantum well and quantum dashes. Journal of Applied Physics, 2012, 112, 033520.	2.5	6
274	Bright light emissions with narrow spectral linewidths from single InAs/GaAs quantum dots directly grown on silicon substrates. Applied Physics Letters, 2013, 102, .	3.3	6
275	(Invited) III-V / Si Integration for Photonics. ECS Transactions, 2016, 72, 171-179.	0.5	6
276	1.5μm quantum dot laser material with high temperature stability of threshold current density and external differential efficiency. , 2016, , .		6
277	Acceleration of the nonlinear dynamics in p-doped indium phosphide nanoscale resonators. Optics Letters, 2017, 42, 795.	3.3	6
278	Strongly temperature-dependent recombination kinetics of a negatively charged exciton in asymmetric quantum dots at 1.55 µm. Applied Physics Letters, 2018, 113, 043103.	3.3	6
279	Carrier transfer efficiency and its influence on emission properties of telecom wavelength InP-based quantum dot – quantum well structures. Scientific Reports, 2018, 8, 12317.	3.3	6
280	Comparison between InP-based quantum dot lasers with and without tunnel injection quantum well and the impact of rapid thermal annealing. Journal of Crystal Growth, 2019, 516, 34-39.	1.5	6
281	Optimization of size uniformity and dot density of InxGa1â°'xAs/GaAs quantum dots for laser applications in 1 µm wavelength range. Journal of Crystal Growth, 2019, 517, 1-6.	1.5	6
282	Temperature Dependence of Photoluminescence from Epitaxial InGaAs/GaAs Quantum Dots with High Lateral Aspect Ratio. Acta Physica Polonica A, 2011, 120, 883-887.	0.5	6
283	Temperature resistant fast In _x Ga _{1â^'x} As / GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers. Optics Express, 2020, 28, 20954.	3.4	6
284	MBE growth and post-growth annealing of GaAs-based resonant tunneling structures, viewed in relation to interface roughness. Journal of Crystal Growth, 1991, 111, 1100-1104.	1.5	5
285	Observation of a novel form of ordering in Al0.5In0.5As and (Ga,Al)0.5In0.5As. Journal of Crystal Growth, 1993, 131, 419-425.	1.5	5
286	Influence of the cap layer thickness on the optical properties of near surface GaInAs/GaAs quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 21, 198-200.	3.5	5
287	Roomâ€ŧemperature stimulated emission of optically pumped GaAs/AlAs quantum wires grown on (311)Aâ€oriented substrates. Applied Physics Letters, 1994, 64, 3443-3445.	3.3	5
288	Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 82-86.	1.5	5

#	Article	IF	CITATIONS
289	Site-controlled growth of GaAs nanoislands on pre-patterned silicon substrates. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 443-448.	1.8	5
290	High-speed directly modulated 1.5μm quantum dot lasers. Proceedings of SPIE, 2016, , .	0.8	5
291	Room-temperature coherent revival in an ensemble of quantum dots. Physical Review Research, 2021, 3,	3.6	5
292	Influence of surface termination of ultrananocrystalline diamond films coated on titanium on response of human osteoblast cells: A proteome study. Materials Science and Engineering C, 2021, 128, 112289.	7.3	5
293	Optical and Spin Properties of NV Center Ensembles in Diamond Nano-Pillars. Nanomaterials, 2022, 12, 1516.	4.1	5
294	Reactive ion etching of InAlAs with Ar/Cl2 mixtures for ridge waveguide lasers. Microelectronic Engineering, 1993, 21, 345-348.	2.4	4
295	Edge-emitting microlasers with one active layer of quantum dots. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 300-305.	2.9	4
296	Self-assembled quantum-dash lasers on the InP system. , 0, , .		4
297	Photomodulation spectroscopy applied to low-dimensional semiconductor structures. Microelectronics Journal, 2003, 34, 351-353.	2.0	4
298	High-pressure studies of the recombination processes, threshold currents, and lasing wavelengths in InAs/GaInAs quantum dot lasers. Physica Status Solidi (B): Basic Research, 2003, 235, 407-411.	1.5	4
299	High-power and low-noise 1.55 μm InP-based quantum dash lasers. , 2004, 5452, 22.		4
300	Room temperature operation of ultra-short quantum cascade lasers with deeply etched Bragg mirrors. Electronics Letters, 2005, 41, 704.	1.0	4
301	High power and very low noise operation at 1.3 and 1.5 μ m with quantum dot and quantum dash Fabry-Perot lasers for microwave links. , 2006, 6399, 158.		4
302	Influence of injector doping density and electron confinement on the properties of GaAs/Al0.45Ga0.55As quantum cascade lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 411-414.	0.8	4
303	Structural and optical analysis of size-controlled InAs quantum dashes. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 108-110.	2.7	4
304	Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 131-134.	2.7	4
305	Mode switching and singlemode tuning in two-segment distributed feedback quantum cascade lasers. Electronics Letters, 2006, 42, 220.	1.0	4
306	Efficient energy transfer in InAs quantum dash based tunnel-injection structures at low		4

temperatures., 2007, , .

#	Article	IF	CITATIONS
307	Optically pumped lasing from a single pillar microcavity with InGaAs/GaAs quantum well potential fluctuation quantum dots. Journal of Applied Physics, 2009, 105, 053513.	2.5	4
308	Growth-Temperature Dependence of Wetting Layer Formation in High Density InGaAs/GaAs Quantum Dot Structures Grown by Droplet Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 085501.	1.5	4
309	Nanostructuring of silicon substrates for the site-controlled growth of GaAs/In0.15Ga0.85As/GaAs nanostructures. Microelectronic Engineering, 2012, 97, 59-63.	2.4	4
310	Coherent photocurrent spectroscopy of single InP-based quantum dots in the telecom band at 1.5µm. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	4
311	Narrow-linewidth 1.511/4m quantum dot distributed feedback lasers. Proceedings of SPIE, 2016, , .	0.8	4
312	High-bandwidth temperature-stable 1.55-μm quantum dot lasers. Proceedings of SPIE, 2017, , .	0.8	4
313	On the relationship between electrical and electro-optical characteristics of InAs/InP quantum dot lasers. Journal of Applied Physics, 2018, 124, .	2.5	4
314	Fabrication of Nanopillars on Nanocrystalline Diamond Membranes for the Incorporation of Color Centers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900233.	1.8	4
315	Semiconductor optical amplifiers with nanostructured gain material. , 2008, , .		4
316	Optical Quality of InAs/InP Quantum Dots on Distributed Bragg Reflector Emitting at 3rd Telecom Window Grown by Molecular Beam Epitaxy. Materials, 2021, 14, 6270.	2.9	4
317	Exciton-photon interaction in low-dimensional semiconductor microcavities. Journal of Experimental and Theoretical Physics, 1998, 87, 723-730.	0.9	3
318	Coherent InGaAsâ^•GaAs laser arrays with laterally coupled distributed feedback gratings. Electronics Letters, 2004, 40, 118.	1.0	3
319	STEM-study of 1.3μm InAs/InGaAs quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 241-244.	2.7	3
320	Scanning transmission electron microscope study on vertically correlated InGaAsâ^•GaAs quantum dots. Applied Physics Letters, 2006, 89, 023121.	3.3	3
321	Some features of chalcohalide glassy Ge–S–AgI thin films. Journal of Physics and Chemistry of Solids, 2007, 68, 936-939.	4.0	3
322	Electromodulation spectroscopy of In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum wells. Superlattices and Microstructures, 2009, 46, 425-434.	3.1	3
323	Investigation of NV centers in diamond nanocrystallites and nanopillars. Physica Status Solidi (B): Basic Research, 2013, 250, 48-50.	1.5	3
324	Functionalization of nanocrystalline diamond films with phthalocyanines. Applied Surface Science, 2016, 379, 415-423.	6.1	3

#	Article	IF	CITATIONS
325	III-V integration on Si for photonics. , 2016, , .		3
326	1.5 ŵm quantum dot lasers for data and telecom applications. , 2016, , .		3
327	Electron and hole spin relaxation in InP-based self-assembled quantum dots emitting at telecom wavelengths. Physical Review B, 2018, 98, .	3.2	3
328	Nanostructured modified ultrananocrystalline diamond surfaces as immobilization support for lipases. Diamond and Related Materials, 2018, 90, 32-39.	3.9	3
329	Development of a Planarization Process for the Fabrication of Nanocrystalline Diamond Based Photonic Structures. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900314.	1.8	3
330	Coherent light matter interactions in nanostructure based active semiconductor waveguides operating at room temperature. Applied Physics Reviews, 2019, 6, 041317.	11.3	3
331	Spin memory effect in charged single telecom quantum dots. Optics Express, 2021, 29, 34024.	3.4	3
332	Study of (As2Se3)100-X(AgI)X Thin Films Prepared by Pld and Vte Methods. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 329-334.	0.3	3
333	Nanostructured Semiconductor Materials For Optoelectronic Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 447-476.	0.3	3
334	High Performance 1550 nm Quantum Dot Semiconductor Optical Amplifiers Operating at 25-100 ŰC. , 2018, , .		3
335	MOICANA: monolithic cointegration of QD-based InP on SiN as a versatile platform for the demonstration of high-performance and low-cost PIC transmitters. , 2019, , .		3
336	Response to â€~ã€~Comment on â€~Investigation of the critical layer thickness in elastically strained InGaAs/GaAlAs quantum wells by photoluminescence and transmission electron miscroscopy' '' [Phys. Lett.55, 2147 (1989)]. Applied Physics Letters, 1989, 55, 2147-2148.	Appal.	2
337	Gain-coupled distributed feedback lasers in the blue-green spectral range by focused ion beam implantation. Journal of Crystal Growth, 1996, 159, 591-594.	1.5	2
338	High performance laterally gain coupled InGaAs/AlGaAs DFB lasers. , 0, , .		2
339	Lasers and amplifiers based on quantum-dot-like gain material. , 2004, , .		2
340	InP-based quantum dash lasers for broadband optical amplification and gas sensing applications. , 0, , .		2
341	Optical characteristics of lowly strained GalnAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3815-3818.	0.8	2
342	Scanning transmission electron microscopy of vertically stacked self organized quantum structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3947-3950.	0.8	2

Johann P Reithmaier

#	Article	IF	CITATIONS
343	Strong coupling in a single quantum dot semiconductor microcavity system. , 2006, , .		2
344	Ultra-compact high transmittance photonic wire bends for monolithic integration on III/V-semiconductors. Electronics Letters, 2006, 42, 1280.	1.0	2
345	Photoreflectance and contactless electroreflectance of an InAs quantum dash laser structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 350-352.	0.8	2
346	Wavelength stabilized quantum dot lasers for high power applications. Physica Status Solidi (B): Basic Research, 2009, 246, 872-875.	1.5	2
347	Structural and optical properties of ultrananocrystalline diamond / InGaAs/GaAs quantum dot structures. Thin Solid Films, 2009, 518, 1489-1492.	1.8	2
348	Optical studies of (AsSe)100â^'x Sb x thin films. Applied Physics A: Materials Science and Processing, 2011, 104, 959-962.	2.3	2
349	Probing the carrier transfer processes in a self-assembled system with In 0.3 Ga 0.7 As/GaAs quantum dots by photoluminescence excitation spectroscopy. Superlattices and Microstructures, 2016, 93, 214-220.	3.1	2
350	Effect of Dielectric Medium Anisotropy on the Polarization Degree of Emission from a Single Quantum Dash. Acta Physica Polonica A, 2016, 129, A-48-A-52.	0.5	2
351	Ill–V on Silicon Nanocomposites. Semiconductors and Semimetals, 2018, , 27-42.	0.7	2
352	Telecom wavelength InP-based L3 photonic crystal cavities: Properties of the cavity ground mode. AIP Conference Proceedings, 2020, , .	0.4	2
353	Resonant and Nonresonant Tunneling Injection Processes in Quantum Dot Optical Gain Media. ACS Photonics, 2020, 7, 602-606.	6.6	2
354	Comparison of quantum dot lasers with and without tunnel-injection quantum well. , 2019, , .		2
355	InAs on InP Quantum Dashes as Single Photon Emitters at the Second Telecommunication Window: Optical, Kinetic, and Excitonic Properties. Acta Physica Polonica A, 2017, 132, 382-386.	0.5	2
356	Measurements of gain and index dynamics in quantum dash semiconductor optical amplifiers. , 2004, , .		2
357	Narrow Linewidth InAs/InP Quantum Dot DFB Laser. , 2019, , .		2
358	Growth-Temperature Dependence of Wetting Layer Formation in High Density InGaAs/GaAs Quantum Dot Structures Grown by Droplet Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 085501.	1.5	2
359	High optical gain in InP-based quantum-dot material monolithically grown on silicon emitting at telecom wavelengths. Semiconductor Science and Technology, 2022, 37, 055005.	2.0	2
360	Tailored InP-based quantum dash structures for ultra-wide gain bandwidth applications. , 0, , .		1

#	Article	IF	CITATIONS
361	Excitonic transitions in GalnAs/GaAs surface quantum wells. European Physical Journal Special Topics, 1993, 03, C5-265-C5-268.	0.2	1
362	Implantation induced damage in. Nuclear Instruments & Methods in Physics Research B, 1995, 99, 594-597.	1.4	1
363	Gain-coupled distributed feedback lasers made by focused ion beam implantation: process parameters and device properties. , 0, , .		1
364	Reduced lateral straggling of implantation induced defects in III/V heterostructures by ion implantation along channeling directions. Applied Physics Letters, 1996, 68, 102-104.	3.3	1
365	Focused ion beam technology: A new approach for the fabrication of optoelectronic devices. , 1997, , .		1
366	Angle Resolved Photoluminescence Excitation Spectroscopy of Exciton–Photon Modes in a Microcavity: K-Dependence and Relaxation. Physica Status Solidi A, 1997, 164, 81-84.	1.7	1
367	Quantum dot lasers for high power and telecommunication applications. , 0, , .		1
368	Quantum-dot microlasers as high-speed light sources for monolithic integration. , 0, , .		1
369	Tertiarybutylarsine (TBAs) and -phosphine (TBP) as group V-precursors for gas source molecular beam epitaxy for optoelectronic applications. Journal of Crystal Growth, 2001, 227-228, 298-302.	1.5	1
370	InAs/InGaAlAs/InP quantum dash lasers for telecommunication applications. , 0, , .		1
371	Capture and confinement of light and carriers in graded-index quantum well laser structures. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 885-887.	2.7	1
372	Decoherence and environment effects in single InGaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 7-10.	2.7	1
373	Zeeman spectroscopy of single self-assembled InAs/InGaAlAs quantum dashes. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1161-1164.	0.8	1
374	Carrier leakage suppression utilising short-period superlattices in 980 nm InGaAs/GaAs quantum well lasers. Physica Status Solidi (B): Basic Research, 2004, 241, 3405-3409.	1.5	1
375	High-brightness (1 W with M2=2.9) GaInAs/(Al)GaAs index-guided quantum-dot tapered lasers at 980 nm with a high-wavelength stability. , 2004, 5452, 1.		1
376	System performance of a modern hollow-core optical fiber coupled to a quantum cascade laser: transmission efficiency and relative intensity noise. , 2005, , .		1
377	Monomodige DFB-Quantenkaskadenlaser mit Metall-Bragg-Rückkopplungsgittern (Single Mode) Tj ETQq1 1	0.784314 0.7	rgBT /Overloci
378	GaAs/AlGaAs-Quantenkaskaden-Laser (GaAs/AlGaAs Quantum Cascade Lasers). TM Technisches Messen, 2005, 72, .	0.7	1

#	Article	IF	CITATIONS
379	Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments. , 2005, , .		1
380	Coherent photonic coupling of semiconductor quantum dots: erratum. Optics Letters, 2006, 31, 3507.	3.3	1
381	Nanostructured semiconductors for optoelectronic applications. , 2006, , .		1
382	Recent advances in nanophotonics—From physics to devices. Current Applied Physics, 2006, 6, e166-e171.	2.4	1
383	High power, low threshold 1060-nm InGaAs/AlGaAs quantum dot lasers. , 2008, , .		1
384	Bulk temperature mapping of broad area quantum dot lasers: modeling and micro-thermographic analysis. Proceedings of SPIE, 2009, , .	0.8	1
385	High optical quality site-controlled quantum dots. Microelectronic Engineering, 2010, 87, 1357-1359.	2.4	1
386	Temperature effects on the characterization of new quantum dot dual mode lasers for terahertz generation. Proceedings of SPIE, 2012, , .	0.8	1
387	Digital modulation at 20 GBit/s of an InAs/InGaAlAs/InP quantum dot laser operating in the telecom wavelength range. , 2012, , .		1
388	Static and dynamic characteristics of InAs/AlGaInAs/InP quantum dot lasers operating at 1550 nm. , 2013, , .		1
389	InP-based 1.5 µm quantum dot lasers: Static and dynamic properties. , 2013, , .		1
390	The issue of 0D-like ground state isolation in GaAs- and InP-based coupled quantum dots-quantum well systems. Journal of Physics: Conference Series, 2017, 906, 012019.	0.4	1
391	Spectral Characteristics of Narrow Linewidth InAs/InP Quantum Dot Distributed Feedback Lasers. , 2018, , .		1
392	Quantum-Dot Based Vertical External-Cavity Surface-Emitting Lasers With High Efficiency. IEEE Photonics Technology Letters, 2021, 33, 719-722.	2.5	1
393	Two-color switching and wavelength conversion at 10 GHz using a Photonic Crystal molecule. , 2013, , \cdot		1
394	Fabrication of Diamond AFM Tips for Quantum Sensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 171-185.	0.3	1
395	1.5-µm Indium Phosphide-based Quantum Dot Lasers and Optical Amplifiers. , 2022, , .		1
396	First order gratings for gain coupled GaInAsP DFB-lasers made by maskless focused ion beam patterning. , 0, , .		0

 A new approach for the fabrication of gain-coupled DFB laser diodes using focused ion beams., 0, , . Microcavity lasers: emission from a fully confined photon state., 1997, , . Focused ion beam implantation for gain coupled 1.55 μm DFB-laser diodes with improved device characteristics., 0, , . 	0 0 0
Focused ion beam implantation for gain coupled 1.55 μ m DFB-laser diodes with improved device characteristics. , 0, , .	0
characteristics., 0,,.	
	0
400 High performance GalnAs/AlGaAs quantum-dot light emitting diodes and lasers. , 0, , .	
401 GaSb/AlGaSb VCSEL structures and microcavities in the 1.5 \hat{l} ¹ /4m wavelength range. , 2000, , 627-639.	Ο
402 Edge-emitting microlasers with a single quantum dot active layer. , 0, , .	0
403 Monolithic integration of laterally complex coupled DFB lasers with passive waveguides by positive wavelength detuning. , 0, , .	0
404 Integration of 2D photonic crystals in InP laserdiodes. , 0, , .	0
Photon band gap systems from semiconductor microcavities. Synthetic Metals, 2001, 116, 457-460. 3.9	0
$1.3 \hat{l}_{4}$ m quantum-dot lasers with improved high temperature properties. , 0, , .	0
 980 nm Quantum Dot Lasers with Very Small Threshold Current Densities. Physica Status Solidi (B): 1.5 	0
408Strain analysis and quantum well intermixing of a laterally modulated multiquantum well system produced by focused ion beam implantation. Journal Physics D: Applied Physics, 2001, 34, A11-A14.2.8	0
409 Two- and three-sectional laterally coupled DBR laser fabricated by focused ion beam lithography. , 0, ,	0
410 Spectral characteristics of single InAs/InGaAs quantum dots in a quantum well. Physica Status Solidi 0.8 C: Current Topics in Solid State Physics, 2003, 0, 1133-1136.	0
411 22 GHz direct-modulated weakly coupled DBR-laser fabricated by focused ion beam lithography. , 0, , .	0
Focused Ion Beam Technology for Optoelectronic Devices. AIP Conference Proceedings, 2003, , . 0.4	0
413 Quantum Dots: Building Blocks of Quantum Devices?. Advances in Solid State Physics, 2004, , 191-212. 0.8	0

#	Article	IF	CITATIONS
415	Experimental investigations into the thermal properties of 1.5-1.8-μm InAs/InP quantum dash lasers. , 0, , .		Ο
416	Ultra-short GaAs/AlGaAs quantum-cascade micro-lasers based on monolithically integrated semiconductor-air Bragg-mirrors. , 0, , .		0
417	High-brightness GalnAs/(Al)GaAs quantum dot tapered lasers at 980 nm with a high wavelength stability. , 2004, 5365, 60.		0
418	Gain and noise properties of InAs/InP quantum dash semiconductor optical amplifiers. , 2005, , .		0
419	GaAs-based four-channel photonic crystal quantum dot laser module operating at 1.3â€[micro sign]m. Electronics Letters, 2005, 41, 1121.	1.0	Ο
420	Structural Analysis of InAs Quantum Dashes Grown on InP Substrate by Scanning Transmission Electron Microscopy. AIP Conference Proceedings, 2005, , .	0.4	0
421	The Influence of Auger Processes on Recombination in Long-Wavelength InAs/GaAs Quantum Dots. AIP Conference Proceedings, 2005, , .	0.4	Ο
422	Integrated four-channel GaAs-based quantum dot laser module with photonic crystals. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 3193.	1.6	0
423	Photoreflectance investigations of energy level structure of InAs quantum dashes embedded in InGaAs/InGaAlAs quantum well grown on InP substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3852-3855.	0.8	0
424	Comparative Analysis of λâ‰^9µm GaAs/AlGaAs Quantum Cascade Lasers with Different Injector Doping. Materials Science Forum, 2006, 518, 29-34.	0.3	0
425	Controllable Switching between Single Modes in Two-Segment Distributed Feedback Quantum-Cascade Lasers. , 0, , .		О
426	Very Low Noise and Reliable 1.55 μm InP-Based Quantum-Dash Fabry-Perot Lasers for Microwave Links. , 2006, , .		0
427	Experimental and Theoretical Investigations on Spectral Gain Bandwidth of Broadband (<300 nm) InP based Quantum Dash Material. , 0, , .		Ο
428	Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier. , 2008, , .		0
429	Introduction to the Issue on Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 480-481.	2.9	Ο
430	Engineered quantum dot structures: fabrication and applications. Proceedings of SPIE, 2009, , .	0.8	0
431	Tunnel injection structures based on InGaAs/GaAs quantum dots: optical properties and energy structure. Journal of Physics: Conference Series, 2010, 245, 012047.	0.4	0
432	Spontaneously Localized Photonic Modes Due to Disorder in the Dielectric Constant. , 2010, , .		0

Johann P Reithmaier

#	Article	IF	CITATIONS
433	Ultrananocrystalline Diamond / Amorphous Carbon Composite Films – Deposition, Characterization and Applications. Solid State Phenomena, 2010, 159, 49-55.	0.3	0
434	High-gain InP-based quantum dot lasers for telecommunication applications. , 2011, , .		0
435	Carrier transfer in the GaAs-based tunnel injection quantum well-quantum dots structures. AIP Conference Proceedings, 2011, , .	0.4	Ο
436	Multi Wavelength Characterization of Ultra Fast Carrier Dynamics in InAs/InP Quantum Dash Optical Amplifiers. , 2011, , .		0
437	Gas chopping etching process for InP based nanostructures with high aspect ratios. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 060601.	1.2	Ο
438	Thermally tunable DFB dual mode laser diode by an external platinum thin-film heater for THz generation. , 2012, , .		0
439	Recent advances in high-speed lasers and amplifiers based on 1.5 µm QD/QDash material. , 2012, , .		Ο
440	15-W Fiber-Coupled Quantum-Dot Pump Module. IEEE Photonics Technology Letters, 2012, 24, 1030-1032.	2.5	0
441	Relation between small and large signal modulation capabilities in highly nonlinear quantum dot lasers for optical telecommunication. , 2012, , .		Ο
442	New class of 1.55 μm quantum dot lasers for future high data rate optical communication. , 2013, , .		0
443	Wavelength conversion at 10 GHz using a two-color photonic crystal gate. , 2013, , .		Ο
444	Highly non-linear phenomena and coherent effects in 1500 nm QD lasers and amplifiers. , 2013, , .		0
445	High modal gain 1.5 μm InP based quantum dot lasers: dependence of static properties on the active layer design. , 2013, , .		Ο
446	Controlled modification of the electronic wavefunction and direct observation of quantum decoherence in a room-temperature quantum-dot semiconductor optical amplifier. , 2014, , .		0
447	Quantum Coherent Interactions in Room Temperature InAs/InP Quantum Dot Amplifiers. , 2015, , .		Ο
448	Breakthroughs in Photonics 2014: Time-Scale-Dependent Nonlinear Dynamics in InAs/InP Quantum Dot Gain Media: From High-Speed Modulation to Coherent Light–Matter Interactions. IEEE Photonics Journal, 2015, 7, 1-7.	2.0	0
449	Towards faster InP photonic crystal all-optical-gates. , 2015, , .		0
450	Coherent control in InAs / InP quantum dot optical amplifiers operating at room-temperature. , 2016, , .		0

IF # ARTICLE CITATIONS High-speed directly modulated 1.5 \hat{I}_{4} m quantum dot lasers. Proceedings of SPIE, 2016, , . 1.5 μm Quantum Dot Lasers and Amplifiers. , 2018, , . 452 0 Telecom Wavelength Nanophotonic Elements for Quantum Communication., 2018,,. Quantum Information Technology and Sensing Based on Color Centers in Diamond. NATO Science for 454 0.3 0 Peace and Security Series B: Physics and Biophysics, 2018, , 193-214. Quantum Nano-Jewelry: Plasmonic Addressing of Single-Photon Emitters in High-Quality Diamond Nanostructures., 2019,,. 456 Coherence Time Prolongation in a Room Temperature Quantum Dot Ensemble., 2020,,. 0 Spin memory effect in charged single telecom quantum dots: erratum. Optics Express, 2021, 29, 36460. 3.4 GaAs based lasers for telecommunication., 2002,,. 458 0 Multiple wavelength amplification in a high power InAs/InP quantum dash optical amplifier operating at 1.55 µm. , 2004, , . Tunneling-injection High-power 1060-nm Quantum Dot Laser with Improved Temperature Stability. 460 0 2009, , . 2D substrate imaging of a tapered laser cavity based on InGaAs quantum dots. IOP Conference Series: 0.6 Materials Science and Engineering, 2009, 6, 012010. Multi-wavelength femtosecond pump-probe characterization of 1550 nm InAs/InP quantum dash optical 462 0 amplifiers. , 2010, , . Slow light using cross gain modulation in a quantum dash semiconductor optical amplifier., 2011, , . Two Photon Induced Lasing in 1550 nm Quantum Dash Optical Gain Media., 2011, , . 464 0 1.55 μm High-Speed Quantum Dot Lasers for Telecommunication Applications. , 2012, , . InP Based Quantum Dot/Dash Material for High Speed Optoelectronic Devices: Recent Results and 466 0 Prospects., 2012,,. Coherent Control by Shaped Pulses in Room Temperature InAs/InP Quantum Dot Optical Amplifiers., 2016,,. 468 High-Speed InP-Based Quantum Dot Lasers With Low Temperature Sensitivity., 2016,,. 0

#	Article	IF	CITATIONS
469	InP-Based Quantum Dot Lasers. , 2017, , .		Ο
470	Co-Occurrence of Resonance and Non-Resonance Tunneling Injection Processes in Quantum Dot Gain Media. , 2020, , .		0
471	Microstructural, MOrphological And Optical Characterization of As2Se3–As2 Te3–Sb2Te3 Amorphous Layers. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 357-360.	0.3	0
472	Ultrashort quantum dot microlasers. , 0, , .		0
473	Quantum coherent revival in a room-temperature quantum-dot optical amplifier: a route towards practical quantum information processing. , 2021, , .		0
474	Steering coherence in quantum dots by carriers injection via tunneling. Nanophotonics, 2022, .	6.0	0