Xinwei He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3340945/publications.pdf

Version: 2024-02-01

394421 454955 1,174 69 19 30 citations h-index g-index papers 85 85 85 1061 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metalâ€Free Cascade Annulation Approach for Modular Assembly of Alkynyl/Benzoyl Functionalized Quinolines. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
2	Recent advances in rhodium-catalysed cross-dehydrogenative-coupling between two C(sp ²)–H bonds. Organic Chemistry Frontiers, 2022, 9, 1992-2012.	4.5	16
3	Rh(III)-Catalyzed Cascade C-H Activation/Annulation of Cyclic 2-Diazo-1,3-diketones with Benzoylacetonitriles to Polycyclic Benzo[de]chromenes. Heterocycles, 2022, 104, 764.	0.7	1
4	Meldrum's acid-induced and FeCl ₃ -catalyzed one-pot domino reactions for construction of bis(indolyl)methanes. Synthetic Communications, 2022, 52, 1155-1164.	2.1	1
5	Rhodium(III)â€Catalyzed Threeâ€Component Cascade Annulation for Modular Assembly of <i>N</i> â€Alkoxylated Isoindolinâ€1â€Ones with Quaternary Carbon Center. Advanced Synthesis and Catalysis, 2022, 364, 2589-2595.	4.3	3
6	Construction of isoxazolone-fused phenanthridines via Rh-catalyzed cascade C–H activation/cyclization of 3-arylisoxazolones with cyclic 2-diazo-1,3-diketones. Organic and Biomolecular Chemistry, 2021, 19, 552-556.	2.8	9
7	Palladiumâ€Catalyzed 5â€ <i>exoâ€dig</i> Cyclization Cascade, Sequential Amination/Etherification for Stereoselective Construction of 3â€Methyleneindolinones. Advanced Synthesis and Catalysis, 2021, 363, 2117-2123.	4.3	9
8	Rhâ€Catalyzed Formal [3+2] Cyclization for the Synthesis of 5â€Aryl â€2â€(quinolinâ€2â€yl)oxazoles and Its Applications in Metal Ions Probes. Chinese Journal of Chemistry, 2021, 39, 621-626.	4.9	9
9	Copper-Catalyzed Cascade 1,4-Addition/Annulation/Hydrolysis of Propargylamines with 2-Hydroxynaphthalene-1,4-diones: Direct Formation of 12-Phenacyl-11H-benzo[b]xanthenes. Journal of Organic Chemistry, 2021, 86, 4182-4192.	3.2	7
10	A cascade double 1,4-addition/intramolecular annulation strategy for expeditious assembly of unsymmetrical dibenzofurans. Communications Chemistry, 2021, 4, .	4.5	14
11	Iridiumâ€catalyzed asymmetric hydrogenation of βâ€ketophosphonates with chiral ferrocenyl P,N,Nâ€ligands. Applied Organometallic Chemistry, 2021, 35, e6283.	3.5	2
12	Rh(III)-Catalyzed Cascade Nucleophilic Addition/Annulation of 2-Diazo-1,3-diketones with 1,3-Dicarbonyl Compounds To Access 6,7-Dihydrobenzofuran-4(5 <i>H</i>)-ones. Journal of Organic Chemistry, 2021, 86, 7370-7380.	3.2	10
13	Cascade Lactonization/Benzannulation of Propargylamines with Dimethyl 3-Oxoglutarate for Modular Assembly of Hydroxylated/Arene-Functionalized Benzo[<i>c</i>)chromen-6-ones. Organic Letters, 2021, 23, 6455-6460.	4.6	18
14	DMAP-Catalyzed Annulation Approach for Modular Assembly of Furan-Fused Chromenes. Organic Letters, 2020, 22, 9444-9449.	4.6	28
15	Rapid Access of Alkynyl and Alkenyl Coumarins via a Dipyridinium Methylide and Propargylamine Cascade Reaction. Organic Letters, 2020, 22, 7348-7352.	4.6	22
16	Palladium-Catalyzed Cascade Decarboxylative Amination/6- <i>endo-dig</i> Benzannulation of <i>o</i> -Alkynylarylketones with <i>N</i> -Hydroxyamides To Access Diverse 1-Naphthylamine Derivatives. Organic Letters, 2020, 22, 3890-3894.	4.6	14
17	Selective synthesis of 2â€(5â€oxoâ€1â€arylhexâ€1â€ynâ€3â€yl)phenyl benzoates via FeCl 3 â€mediated cascade propargylamines with β â€enamino ketones. Applied Organometallic Chemistry, 2020, 34, e5676.	reactions	9 ^f
18	Synthesis of unsymmetrical urea derivatives <i>via</i> one-pot sequential three-component reactions of cyclic 2-diazo-1,3-diketones, carbodiimides, and 1,2-dihaloethanes. Organic and Biomolecular Chemistry, 2020, 18, 4178-4182.	2.8	6

#	Article	IF	Citations
19	Rh-Catalyzed C–H activation/intramolecular condensation for the construction of benzo[f]pyrazolo[1,5-a][1,3]diazepines. Organic and Biomolecular Chemistry, 2020, 18, 2893-2901.	2.8	14
20	Copper-catalyzed cascade three-component azide–alkyne cycloaddition/condensation/transesterification: easy access to 3-triazolylcoumarins. New Journal of Chemistry, 2020, 44, 12266-12273.	2.8	7
21	Rh-catalyzed C–N coupling of N-sulfonyl-1,2,3-trizales with secondary amines for regioselective synthesis of phenylvinyl-1,2-diamines. Synthetic Communications, 2020, 50, 2685-2697.	2.1	7
22	Rh(III)-Catalyzed Relay Double Carbenoid Insertion and Diannulation of Sulfoximine Benzamides with α-Diazo Carbonyl Compounds: Access to Furo[2,3-c]isochromenes. Organic Letters, 2020, 22, 2506-2511.	4.6	22
23	Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/ <i>oxa</i> -Michael Addition between Propargylamines with Water. Organic Letters, 2020, 22, 4306-4310.	4.6	27
24	Catalyst-Free Synthesis of 2,3-Dihydrobenzofurans via a Formal [4+1] Annulation of Propargylamines with Sulfur Ylides. Journal of Organic Chemistry, 2019, 84, 11623-11638.	3.2	20
25	Palladacycles as Precatalysts for Heck and Sonogashira Cross-Coupling Reactions., 2019,, 21-173.		4
26	Rhodium(II) Acetateâ€Catalysed Cyclization of Pyrazolâ€5â€amine and 1,3â€Diketoneâ€2â€diazo Compounds L N â€Dimethylformamide as a Carbonâ€Hydrogen Source: Access to Pyrazolo[3,4―b]pyridines. Advanced Synthesis and Catalysis, 2019, 361, 3518-3524.	Ising N , 4.3	21
27	Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1H-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives. Synthetic Communications, 2019, 49, 959-972.	2.1	4
28	Synthesis of 4-styrylcoumarins $\langle i \rangle via \langle i \rangle$ FeCl $\langle sub \rangle 3 \langle sub \rangle$ -promoted cascade reactions of propargylamines with \hat{l}^2 -keto esters. Organic and Biomolecular Chemistry, 2019, 17, 4005-4013.	2.8	10
29	Baseâ€mediated 1,4 onjugate Addition/Intramolecular 5â€ <i>exoâ€dig</i> Annulation of Propargylamines with Benzoylacetonitriles and <i>β</i> â€Keto Esters for Polysubstituted Furans and Furo[3,4â€ <i>c</i> }coumarins Formation. Advanced Synthesis and Catalysis, 2019, 361, 1874-1886.	4.3	21
30	A ZnI ₂ -catalyzed regioselective cascade 1,4-conjugate addition/5- <i>exo-dig</i> annulation pathway for one-pot access to heterobiaryl frameworks. Chemical Communications, 2019, 55, 15069-15072.	4.1	18
31	Substituent-oriented C–N bond formation <i>via</i> N–H insertion or Wolff rearrangement of 5-aryl-1 <i>H</i> -pyrazoles and diazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 9766-9771.	2.8	9
32	Highly efficient AgNO ₃ â€catalyzed approach to 2â€(benzo[<i>d</i>)azolâ€2â€yl)phenols from salicylaldehydes with 2â€aminothiophenol, 2â€aminophenol and benzeneâ€1,2â€diamine. Applied Organometallic Chemistry, 2018, 32, e4284.	3.5	15
33	Divergent synthesis of 3,4-dihydrodibenzo[<i>b</i> , <i>d</i>)furan-1(2 <i>H</i>)-ones and isocoumarins <i>via</i> additive-controlled chemoselective C–C or C–N bond cleavage. New Journal of Chemistry, 2018, 42, 1673-1681.	2.8	19
34	Ferrocenyl bisoxazoline as an efficient nonâ€phosphorus ligand for palladiumâ€catalyzed copperâ€free Sonogashira reaction in aqueous solution. Applied Organometallic Chemistry, 2018, 32, e4156.	3.5	6
35	Selective Synthesis of Aminoisoquinolines via Rh(III)-Catalyzed C–H/N–H Bond Functionalization of ⟨i>N⟨/i>-Aryl Amidines with Cyclic 2-Diazo-1,3-diketones. Journal of Organic Chemistry, 2018, 83, 13463-13472.	3.2	44
36	Rh(III)-catalyzed C-H activation of primary benzamides and tandem cyclization with cyclic 2-diazo-1,3-diketones for the synthesis of isocoumarins. Tetrahedron, 2018, 74, 7082-7088.	1.9	21

#	Article	IF	CITATIONS
37	Synthesis of oxazole and furan derivatives <i>via</i> Rh ₂ (OAc) ₄ -catalyzed C≡X bond insertion of cyclic 2-diazo-1,3-diketones with nitriles and arylacetylenes. Synthetic Communications, 2018, 48, 2782-2792.	2.1	10
38	FeCl ₃ -promoted tandem 1,4-conjugate addition/6- <i>endo-dig</i> cyclization/oxidation of propargylamines and benzoylacetonitriles/malononitriles: direct access to functionalized 2-aryl-4 <i>H</i> -chromenes. Organic and Biomolecular Chemistry, 2018, 16, 7191-7202.	2.8	20
39	Expanding Application of Immobilized Candida Antarctica Lipase B: A Green Enzyme Catalyst for Knoevenagel Condensation Reaction. Fibers and Polymers, 2018, 19, 1611-1617.	2.1	11
40	Oleylamine-catalyzed Tandem Knoevenagel/Michael Addition of 1,3-Cyclohexanediones with Aromatic Aldehydes. Chemical Research in Chinese Universities, 2018, 34, 186-190.	2.6	4
41	Regiospecific Synthesis of $1-(3,4-Dihydro-2H-benzo[b][1,4]$ oxazin-3-yl)indolizine Derivatives Through a Three-step Sequence from $2-A$ rylindolizine. Heterocycles, 2018 , 96 , 2079 .	0.7	2
42	Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C–H Activation and Esterification. Journal of Organic Chemistry, 2017, 82, 2081-2088.	3.2	72
43	Ferrocenyl-isoxazole derivative: a novel electrochemical, colorimetric and fluorescent multiple signal probe for highly selective recognition of Cu2+ ions. Chemical Research in Chinese Universities, 2017, 33, 31-35.	2.6	6
44	DMAP-catalyzed cyclization of Schiff bases with $\hat{l}\pm$ -halo ketones: Synthesis of 1,4-benzoxazines. Synthetic Communications, 2017, 47, 878-885.	2.1	4
45	Synthesis of polysubstituted phenyl acetates via FeCl 3 -mediated domino reaction of 2-(aryl(piperidin-1-yl)methyl)phenols and 1,3-diketones. Tetrahedron, 2017, 73, 7017-7023.	1.9	6
46	Oxidative Rearrangement of Isatins with Arylamines Using <scp>H₂O₂</scp> as Oxidant: A Facile Synthesis of Quinazolineâ€2,4â€diones and Evaluation of Their Antibacterial Activity. Chinese Journal of Chemistry, 2017, 35, 1835-1843.	4.9	14
47	Direct carboxamidation of cyclic 2-diazo-1,3-diketones by Rh2(OAc)4-catalyzed isocyanide insertion–hydrolysis. Organic and Biomolecular Chemistry, 2017, 15, 7127-7130.	2.8	24
48	Rh(III)-Catalyzed C–H Activation/Intramolecular Cyclization: Access to ⟨i>N⟨/i>-Acyl-2,3-dihydro-1⟨i>H⟨/i>-carbazol-4(9⟨i>H⟨/i>)-ones from Cyclic 2-Diazo-1,3-diketones and ⟨i>N⟨/i>-Arylamides. ACS Omega, 2017, 2, 8507-8516.	3.5	21
49	Synthesis of 2-Arylimino-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-ones via Rh2(OAc)4-Catalyzed Reactions of Cyclic 2-Diazo-1,3-diketones with Aryl Isothiocyanates. ACS Omega, 2016, 1, 1277-1283.	3.5	13
50	Synthesis of $3\hat{a}\in^2$, $4\hat{a}\in^2\hat{a}\in$ Diaryl $\hat{a}\in^4\hat{a}\in^2$ <i>>H</i> \\hat{a}\in \sprint{\text{spiro}[indoline}\hat{a}\in \frac{3}{3}\in \hat{a}\in \frac{2}{3}\in \fra	nes ₄ .9 via	\DMAP
51	Combinatorial synthesis of spiro[indoline-3,2 \hat{a} e²-pyrrole] derivatives via a three-component reaction under catalyst-free conditions. RSC Advances, 2016, 6, 10412-10418.	3.6	17
52	FeCl3-Mediated One-Pot Domino Reactions for the Synthesis of 9-Aryl/9-Arylethynyl-2,3,4,9-tetrahydro-1H-xanthen-1-ones from Propargylic Amines/Diaryl Amines and 1,3-Cyclohexanediones. Journal of Organic Chemistry, 2016, 81, 2062-2069.	3.2	27
53	4-dimethylaminopyridine-catalyzed cascade reaction for efficient synthesis of naphthofurans. Chemical Research in Chinese Universities, 2016, 32, 62-67.	2.6	4
54	Progress in Iron Complexes-Catalyzed Organic Reactions. Chinese Journal of Organic Chemistry, 2016, 36, 1465.	1.3	9

#	Article	IF	CITATIONS
55	FeCl3-Mediated Synthesis of \hat{l}^2 -Alkynyl Ketones via Domino Nucleophilic-Substitution/Intramolecular-Cyclization/Reverse Claisen Condensation of N-Cyclohexyl Propargylamines and 1,3-Diketones. Journal of Organic Chemistry, 2015, 80, 4760-4765.	3.2	16
56	Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum's acid andÂalcohols. Tetrahedron, 2015, 71, 863-868.	1.9	60
57	Synthesis of 3,4,5-Trisubstituted Isoxazoles by the 1,3-Dipolar Cycloaddition Reaction of \hat{l}_{\pm} -Azido Acrylates and Aromatic Oximes. Synthesis, 2014, 46, 510-514.	2.3	19
58	FeCl ₃ -Catalyzed Cascade Reaction: An Efficient Approach to Functionalized Coumarin Derivatives. Synthetic Communications, 2014, 44, 1507-1514.	2.1	33
59	FeCl3-Catalyzed Four-Component Nucleophilic Addition/Intermolecular Cyclization Yielding Polysubstituted Pyridine Derivatives. Journal of Organic Chemistry, 2014, 79, 8882-8888.	3.2	53
60	The efficient enantioselective synthesis of dihydropyrans via organocatalytic Michael addition reactions. Tetrahedron: Asymmetry, 2014, 25, 796-801.	1.8	11
61	One-pot synthesis of disulfide-linked N-sulfonylazetidin-2-imines via a copper-catalyzed multicomponent cascade reaction. Tetrahedron, 2013, 69, 10134-10138.	1.9	11
62	Synthesis of 3,4-dihydro-2H-1,4-benzo[b]thiazine derivatives via DABCO-catalyzed one-pot three-component condensation reactions. RSC Advances, 2013, 3, 4643.	3.6	11
63	Novel syntheses of pyrrolo[2,1-a]isoquinolines via 1,3-dipolar cycloaddition between Isoquinoliniums and alkynes. RSC Advances, 2012, 2, 7681.	3.6	15
64	Syntheses of N-sulfonyl-N,N-disubstituted amidines via a three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal alkynes. Science China Chemistry, 2012, 55, 214-222.	8.2	17
65	DMAP-catalyzed cascade reaction: one-pot synthesis of benzofurans in water. Tetrahedron, 2010, 66, 9629-9633.	1.9	40
66	Copper-Catalyzed Multicomponent Reaction: Synthesis of 4-Arylsulfonylimino-4,5-dihydrofuran Derivatives. Journal of Organic Chemistry, 2010, 75, 5743-5745.	3.2	50
67	Copperâ€Catalyzed Efficient Multicomponent Reaction: Synthesis of Benzoxazolineâ€Amidine Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 2709-2713.	4.3	51
68	New route synthesis of indolizines via 1,3-dipolar cycloaddition of pyridiniums and alkynes. Tetrahedron Letters, 2009, 50, 6981-6984.	1.4	44
69	Assembly of pyran-fused isoquinolines via Rh-catalyzed double annulations of methyl benzimidates with diazo compounds. Synthesis, 0, 0, .	2.3	1