Fang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3340316/publications.pdf Version: 2024-02-01

FANCLIN

#	Article	IF	CITATIONS
1	CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Developmental Biology, 2022, 481, 148-159.	2.0	2
2	Slitâ€Robo signalling establishes a Sphingosineâ€1â€phosphate gradient to polarise fin mesenchyme. EMBO Reports, 2022, 23, .	4.5	4
3	Fibronectin and Integrin α5 play overlapping and independent roles in regulating the development of pharyngeal endoderm and cartilage. Developmental Biology, 2022, 489, 122-133.	2.0	1
4	Channel Function of Polycystin-2 in the Endoplasmic Reticulum Protects against Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 1501-1516.	6.1	14
5	Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development (Cambridge), 2021, 148, .	2.5	10
6	Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. Journal of Cell Biology, 2021, 220, .	5.2	14
7	Lpar2b Controls Lateral Line Tissue Size by Regulating Yap1 Activity in Zebrafish. Frontiers in Molecular Neuroscience, 2018, 11, 34.	2.9	2
8	Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development (Cambridge), 2018, 145, .	2.5	20
9	GÎ ² 1 is required for neutrophil migration in zebrafish. Developmental Biology, 2017, 428, 135-147.	2.0	4
10	S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence. Developmental Biology, 2016, 414, 228-243.	2.0	6
11	Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Development (Cambridge), 2015, 142, 2928-2940.	2.5	34
12	Gβ1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium. Developmental Biology, 2014, 385, 316-327.	2.0	30
13	S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Development (Cambridge), 2013, 140, 789-799.	2.5	51
14	Syntaxin 16 Regulates Lumen Formation during Epithelial Morphogenesis. PLoS ONE, 2013, 8, e61857.	2.5	12
15	Syntaxin 16 is required for epithelial morphogenesis and single lumen formation. FASEB Journal, 2013, 27, 967.8.	0.5	0
16	The Gβ3 splice variant associated with the C825T gene polymorphism is an unstable and functionally inactive protein. Cellular Signalling, 2012, 24, 2349-2359.	3.6	9
17	Gβγ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity. Development (Cambridge), 2012, 139, 57-62.	2.5	22
18	Identification and expression patterns of members of the proteaseâ€activated receptor (par) gene family during zebrafish development. Developmental Dynamics, 2011, 240, 278-287.	1.8	19

Fang Lin

#	Article	IF	CITATIONS
19	A Critical Role of Gβγ in Tumorigenesis and Metastasis of Breast Cancer. Journal of Biological Chemistry, 2011, 286, 13244-13254.	3.4	43
20	The WD40 Repeat Protein WDR26 Binds Gβγ and Promotes Gβγ-dependent Signal Transduction and Leukocyte Migration. Journal of Biological Chemistry, 2011, 286, 43902-43912.	3.4	26
21	Prostaglandin Gβγ signaling stimulates gastrulation movements by limiting cell adhesion through Snai1a stabilization. Development (Cambridge), 2010, 137, 1327-1337.	2.5	38
22	Gα12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. Journal of Cell Biology, 2009, 184, 909-921.	5.2	60
23	RACK1 Regulates Directional Cell Migration by Acting on Gβγ at the Interface with Its Effectors PLCβ and PI3Kγ. Molecular Biology of the Cell, 2008, 19, 3909-3922.	2.1	53
24	Ga12/13 signaling regulates epiboly by inhibiting E adherin function. FASEB Journal, 2006, 20, A544.	0.5	0
25	RACK1 negatively regulates SDF1α/CXCL12â€stimulated chemotaxis of Jurkat cells. FASEB Journal, 2006, 20, A696.	0.5	0
26	Essential roles of Cα12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. Journal of Cell Biology, 2005, 169, 777-787.	5.2	101
27	RACK1 Binds to a Signal Transfer Region of Gβγ and Inhibits Phospholipase C β2 Activation. Journal of Biological Chemistry, 2005, 280, 33445-33452.	3.4	37
28	RACK1 Regulates Specific Functions of Gβγ. Journal of Biological Chemistry, 2004, 279, 17861-17868.	3.4	58
29	Interaction of G?? with RACK1 and other WD40 repeat proteins*1. Journal of Molecular and Cellular Cardiology, 2004, 37, 399-406.	1.9	64
30	Mutation of a Single TMVI Residue, Phe282, in the β2-Adrenergic Receptor Results in Structurally Distinct Activated Receptor Conformationsâ€. Biochemistry, 2002, 41, 6045-6053.	2.5	34
31	Phe303 in TMVI of the α1B-Adrenergic Receptor Is a Key Residue Coupling TM Helical Movements to G-protein Activation. Biochemistry, 2002, 41, 588-596.	2.5	30
32	Targeted α 1A -Adrenergic Receptor Overexpression Induces Enhanced Cardiac Contractility but not Hypertrophy. Circulation Research, 2001, 89, 343-350.	4.5	135
33	Phe310 in Transmembrane VI of the α1B-Adrenergic Receptor Is a Key Switch Residue Involved in Activation and Catecholamine Ring Aromatic Bonding. Journal of Biological Chemistry, 1999, 274, 16320-16330.	3.4	43
34	α1-Adrenergic Receptor Signaling via Gh Is Subtype Specific and Independent of Its Transglutaminase Activity. Journal of Biological Chemistry, 1996, 271, 32385-32391.	3.4	100