
Wenzhan Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3340176/publications.pdf Version: 2024-02-01

MENZHAN XII

#	Article	IF	CITATIONS
1	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	21.0	123
2	Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. Advanced Energy Materials, 2018, 8, 1703178.	19.5	98
3	Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer. Journal of Materials Chemistry C, 2018, 6, 3634-3641.	5.5	79
4	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	14.9	69
5	Minimizing Voltage Loss in Efficient All-Inorganic CsPbI ₂ Br Perovskite Solar Cells through Energy Level Alignment. ACS Energy Letters, 2019, 4, 2491-2499.	17.4	68
6	Bulk Heterojunction Perovskite Solar Cells Incorporated with Zn ₂ SnO ₄ Nanoparticles as the Electron Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 34020-34029.	8.0	38
7	Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. ACS Applied Materials & Interfaces, 2017, 9, 5348-5357.	8.0	33
8	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	5.5	24
9	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	8.0	24
10	Ultrasensitive Perovskite Photodetectors by Co Partially Substituted Hybrid Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 12055-12060.	6.7	18
11	A solution-processed near-infrared polymer: PbS quantum dot photodetectors. RSC Advances, 2017, 7, 34633-34637.	3.6	17
12	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	8.0	17
13	Carbon nanodots enhanced performance of Cs0.15FA0.85Pbl3 perovskite solar cells. Nano Research, 2021, 14, 2294-2300.	10.4	15
14	Efficient Organic Solar Cells with Polymer-Small Molecule: Fullerene Ternary Active Layers. ACS Omega, 2017, 2, 1786-1794.	3.5	11
15	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	5.7	10
16	Enhanced Device Performance of Perovskite Photovoltaics by Magnetic Fieldâ€Aligned Perovskitesâ€Magnetic Nanoparticles Composite Thin Film. Advanced Functional Materials, 2020, 30, 2002808.	14.9	10
17	Ultrasensitive and high gain solution-processed perovskite photodetectors by CH3NH3PbI2.55Br0.45:Zn2SnO4 bulk heterojunction composite. Emergent Materials, 2020, 3, 1-7.	5.7	10
18	Boosting Performance of CsPbI ₃ Perovskite Solar Cells via the Synergy of Hydroiodic Acid and Deionized Water. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	9

Wenzhan Xu

#	Article	IF	CITATIONS
19	A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse. Journal of Materials Chemistry C, 2022, 10, 9391-9400.	5.5	8
20	Double Cascading Charge Transfer at Integrated Perovskite/Organic Bulk Heterojunctions for Extended Nearâ€Infrared Photoresponse and Enhanced Photocurrent. Small, 2022, 18, e2106083.	10.0	7
21	Dual–Functionalâ€Polymer Dopant–Passivant Boosted Electron Transport Layer for Highâ€Performance Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100236.	5.8	5
22	Low non-radiative recombination loss in CsPbl ₂ Br perovskite solar cells. , 2021, , .		1
23	Antisolvents Treatment of Cs _{0.15} FA _{0.85} PbI ₃ Boosting Efficiency for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 322-326.	2.5	1