Lysangela R Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339996/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. MBio, 2022, 13, e0327221.	1.8	21
2	Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans. MBio, 2022, 13, e0030122.	1.8	24
3	Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of <i>Cryptococcus neoformans</i> , <i>Cryptococcus deuterogattii</i> , and <i>Candida auris</i> . Microbiology Spectrum, 2022, 10, e0060122.	1.2	13
4	Isolation of Extracellular Vesicles from Candida auris. Methods in Molecular Biology, 2022, , 173-178.	0.4	2
5	The RNA Content of Fungal Extracellular Vesicles: At the "Cutting-Edge―of Pathophysiology Regulation. Cells, 2022, 11, 2184.	1.8	5
6	Transcriptional and translational landscape of Candida auris in response to caspofungin. Computational and Structural Biotechnology Journal, 2021, 19, 5264-5277.	1.9	14
7	Characterization of the RNA-Binding Protein TcSgn1 in Trypanosoma cruzi. Microorganisms, 2021, 9, 986.	1.6	1
8	Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Frontiers in Genetics, 2021, 12, 648524.	1.1	13
9	Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. MSystems, 2021, 6, e0082221.	1.7	27
10	<i>Cryptococcus</i> extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 2021, 10, e12129.	5.5	47
11	Analysis of Cryptococcal Extracellular Vesicles: Experimental Approaches for Studying Their Diversity Among Multiple Isolates, Kinetics of Production, Methods of Separation, and Detection in Cultures of Titan Cells. Microbiology Spectrum, 2021, 9, e0012521.	1.2	9
12	Re-emergence of Gamma-like-II and emergence of Gamma-S:E661D SARS-CoV-2 lineages in the south of Brazil after the 2021 outbreak. Virology Journal, 2021, 18, 222.	1.4	8
13	Biogenesis of Fungal Extracellular Vesicles: What Do We Know?. Current Topics in Microbiology and Immunology, 2021, 432, 1-11.	0.7	0
14	Lessons Learned from Studying Histoplasma capsulatum Extracellular Vesicles. Current Topics in Microbiology and Immunology, 2021, 432, 13-18.	0.7	2
15	Cellular and Extracellular Vesicle RNA Analysis in the Global Threat Fungus <i>Candida auris</i> . Microbiology Spectrum, 2021, 9, e0153821.	1.2	5
16	Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593170.	1.8	50
17	Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host–Pathogen Interaction. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593160.	1.8	33
18	RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 56.	1.8	18

Lysangela R Alves

#	Article	IF	CITATIONS
19	Analysis of the In Vivo Translation Process in Trypanosoma cruzi Using Ribosome Profiling. Methods in Molecular Biology, 2020, 2116, 117-123.	0.4	0
20	Immunoprecipitation for the Analysis of Macromolecular Complexes in Trypanosoma cruzi. Methods in Molecular Biology, 2020, 2116, 109-116.	0.4	0
21	The Nuclear <scp>RNA</scp> â€binding Protein <scp>RBSR</scp> 1 Interactome in <i>Trypanosoma cruzi</i> . Journal of Eukaryotic Microbiology, 2019, 66, 244-253.	0.8	12
22	Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiology, 2019, 19, 128.	1.3	17
23	Comparison of the RNA Content of Extracellular Vesicles Derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii. Cells, 2019, 8, 765.	1.8	54
24	A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in <i>Cryptococcus gattii</i> . MSphere, 2019, 4, .	1.3	67
25	Extracellular Vesicle-Mediated RNA Release in <i>Histoplasma capsulatum</i> . MSphere, 2019, 4, .	1.3	38
26	Extracellular Vesicles as Vehicles for the Delivery of Biologically Active Fungal Molecules. Current Protein and Peptide Science, 2019, 20, 1027-1036.	0.7	16
27	Comparing intestinal versus diffuse gastric cancer using a PEFF-oriented proteomic pipeline. Journal of Proteomics, 2018, 171, 63-72.	1.2	11
28	Improvements in the CRISPR/Cas9 system for high efficiency gene disruption in Trypanosoma cruzi. Acta Tropica, 2018, 178, 190-195.	0.9	29
29	Extracellular Vesicles in Fungi: Composition and Functions. Current Topics in Microbiology and Immunology, 2018, 422, 45-59.	0.7	36
30	Golgi Reassembly and Stacking Protein (GRASP) Participates in Vesicle-Mediated RNA Export in Cryptococcus Neoformans. Genes, 2018, 9, 400.	1.0	30
31	Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection. Frontiers in Microbiology, 2018, 9, 1792.	1.5	29
32	Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq. RNA Biology, 2018, 15, 1-13.	1.5	10
33	RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genetics and Molecular Biology, 2017, 40, 22-30.	0.6	38
34	The NtrY–NtrX twoâ€component system is involved in controlling nitrate assimilation in <i>Herbaspirillum seropedicae</i> strain SmR1. FEBS Journal, 2016, 283, 3919-3930.	2.2	21
35	The Role of the Trypanosoma cruzi TcNRBD1 Protein in Translation. PLoS ONE, 2016, 11, e0164650.	1.1	10
36	RNA-binding proteins related to stress response and differentiation in protozoa. World Journal of Biological Chemistry, 2016, 7, 78.	1.7	24

3

Lysangela R Alves

#	Article	IF	CITATIONS
37	Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi. BMC Microbiology, 2015, 15, 104.	1.3	20
38	Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 2015, 5, 7763.	1.6	185
39	The mRNAs associated to a zinc finger protein from <i>Trypanosoma cruzi</i> shift during stress conditions. RNA Biology, 2014, 11, 921-933.	1.5	29
40	Characterization of the pattern of ribosomal protein L19 production during the lifecycle of Leishmania spp Experimental Parasitology, 2014, 147, 60-66.	0.5	6
41	mRNA Localization Mechanisms in Trypanosoma cruzi. PLoS ONE, 2013, 8, e81375.	1.1	8
42	Dendritic Cell Apoptosis and the Pathogenesis of Dengue. Viruses, 2012, 4, 2736-2753.	1.5	41
43	Distinct subcellular localization of tRNA-derived fragments in the infective metacyclic forms of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 816-819.	0.8	23
44	Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genetics, 2011, 7, e1002064.	1.5	188
45	A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmic granules. Molecular and Biochemical Parasitology, 2010, 171, 64-73.	0.5	92
46	Protein and mRNA content of TcDHH1 ontaining mRNPs in <i>Trypanosomaâ€∫cruzi</i> . FEBS Journal, 2010, 277, 3415-3426.	2.2	46
47	Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi, Gene, 2010, 452, 72-78.	1.0	29