
Raghunath V Chaudhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solubility of Carbon Dioxide in Carboxylation Reaction Mixtures. Industrial & Engineering Chemistry Research, 2021, 60, 8375-8385.	1.8	1
2	Selective Oxidation of Glycerol: A Biomass-Derived Feedstock Using the Pt–Cu Janus Catalyst for Value-Added Products. Industrial & Engineering Chemistry Research, 2021, 60, 185-195.	1.8	7
3	Kinetic modeling and mechanistic investigations of transesterification of propylene carbonate with methanol over an Fe–Mn double metal cyanide catalyst. Reaction Chemistry and Engineering, 2020, 5, 101-111.	1.9	7
4	Lattice strained bimetallic PtPd nanocatalysts display multifunctional nature for transfer hydrogenolysis of sorbitol in base-free medium. Materials Today Sustainability, 2020, 10, 100047.	1.9	1
5	Chemical Synthesis of Adipic Acid from Glucose and Derivatives: Challenges for Nanocatalyst Design. ACS Sustainable Chemistry and Engineering, 2020, 8, 18732-18754.	3.2	8
6	Enriching Propane/Propylene Mixture by Selective Propylene Hydroformylation: Economic and Environmental Impact Analyses. ACS Sustainable Chemistry and Engineering, 2020, 8, 5140-5146.	3.2	2
7	Continuous Process for the Production of Taurine from Monoethanolamine. Industrial & Engineering Chemistry Research, 2020, 59, 13007-13015.	1.8	9
8	Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 4096-4106.	3.2	25
9	Rh-Catalyzed Hydroformylation of 1,3-Butadiene and Pent-4-enal to Adipaldehyde in CO ₂ -Expanded Media. Industrial & Engineering Chemistry Research, 2019, 58, 22526-22533.	1.8	4
10	Liquid-Phase Oxidation of Ethylene Glycol on Pt and Pt–Fe Catalysts for the Production of Glycolic Acid: Remarkable Bimetallic Effect and Reaction Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 18561-18568.	1.8	17
11	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	3.3	32
12	Aqueous-Phase Glycerol Catalysis and Kinetics with in Situ Hydrogen Formation. ACS Sustainable Chemistry and Engineering, 2019, 7, 11323-11333.	3.2	14
13	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	2.9	10
14	Transesterification of Propylene Carbonate with Methanol Using Fe–Mn Double Metal Cyanide Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 5698-5710.	3.2	31
15	Dual Function Lewis Acid Catalyzed Depolymerization of Industrial Corn Stover Lignin into Stable Monomeric Phenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 1362-1371.	3.2	25
16	Enhanced hydroformylation of 1-octene in n-butane expanded solvents with Co-based complexes. Reaction Chemistry and Engineering, 2018, 3, 344-352.	1.9	6
17	Homogeneous catalytic hydroformylation of propylene in propane-expanded solvent media. Chemical Engineering Science, 2018, 187, 148-156.	1.9	12
18	Catalytic H2 auto transfer amination of polyols to alkyl amines in one pot using supported Ru catalysts. Catalysis Today, 2018, 302, 227-232.	2.2	8

RAGHUNATH V CHAUDHARI

#	Article	IF	CITATIONS
19	Enhanced solubility of hydrogen and carbon monoxide in propane―and propyleneâ€expanded liquids. AICHE Journal, 2018, 64, 970-980.	1.8	7
20	Oxidation of Glucose Using Mono- and Bimetallic Catalysts under Base-Free Conditions. Organic Process Research and Development, 2018, 22, 1653-1662.	1.3	21
21	Kinetic Study of CaO-Catalyzed Transesterification of Cyclic Carbonates with Methanol. Industrial & Engineering Chemistry Research, 2018, 57, 14977-14987.	1.8	16
22	Structurally Strained Bimetallic PtFe Nanocatalysts Show Tunable Catalytic Selectivity in Aqueous Oxidation of Bio-Polyols to Dicarboxylic Acids. Industrial & Engineering Chemistry Research, 2018, 57, 12078-12086.	1.8	9
23	Effects of tunable acidity and basicity of Nbâ€KITâ€6 catalysts on ethanol conversion: Experiments and kinetic modeling. AICHE Journal, 2017, 63, 2888-2899.	1.8	13
24	Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General, 2017, 534, 46-57.	2.2	24
25	Kinetic modeling of carboxylation of propylene oxide to propylene carbonate using ion-exchange resin catalyst in a semi-batch slurry reactor. Chemical Engineering Science, 2017, 168, 189-203.	1.9	16
26	Intriguing Catalyst (CaO) Pretreatment Effects and Mechanistic Insights during Propylene Carbonate Transesterification with Methanol. ACS Sustainable Chemistry and Engineering, 2017, 5, 4718-4729.	3.2	31
27	Phase Transformed PtFe Nanocomposites Show Enhanced Catalytic Performances in Oxidation of Glycerol to Tartronic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 13157-13164.	1.8	24
28	Zirconium-Incorporated Mesoporous Silicates Show Remarkable Lignin Depolymerization Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 7155-7164.	3.2	38
29	Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with <i>in situ</i> formed hydrogen. AICHE Journal, 2016, 62, 1162-1173.	1.8	23
30	Anisotropic growth of PtFe nanoclusters induced by lattice-mismatch: Efficient catalysts for oxidation of biopolyols to carboxylic acid derivatives. Journal of Catalysis, 2016, 337, 272-283.	3.1	43
31	Kinetic Modeling of Sorbitol Hydrogenolysis over Bimetallic RuRe/C Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6037-6047.	3.2	24
32	Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts. ACS Catalysis, 2016, 6, 4576-4583.	5.5	68
33	Synergistic Effects of Bimetallic PtPd/TiO ₂ Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Industrial & Engineering Chemistry Research, 2016, 55, 2932-2945.	1.8	73
34	Rhodium complex with unsymmetrical vicinal diamine ligand: excellent catalyst for asymmetric transfer hydrogenation of ketones. RSC Advances, 2015, 5, 51722-51729.	1.7	8
35	Importance of Long-Range Noncovalent Interactions in the Regioselectivity of Rhodium-Xantphos-Catalyzed Hydroformylation. Organometallics, 2015, 34, 1062-1073.	1.1	23
36	Sorbitol Hydrogenolysis over Hybrid Cu/CaO-Al ₂ O ₃ Catalysts: Tunable Activity and Selectivity with Solid Base Incorporation. ACS Catalysis, 2015, 5, 6545-6558.	5.5	76

Raghunath V Chaudhari

#	Article	IF	CITATIONS
37	Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. Journal of Catalysis, 2015, 330, 323-329.	3.1	88
38	Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. Journal of Catalysis, 2014, 309, 174-184.	3.1	91
39	Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chemical Engineering Science, 2014, 115, 3-18.	1.9	40
40	Graphene oxide stabilized Cu2O for shape selective nanocatalysis. Journal of Materials Chemistry A, 2014, 2, 7147.	5.2	28
41	Synthesis and Dehydration Activity of Novel Lewis Acidic Ordered Mesoporous Silicate: Zr-KIT-6. Industrial & Engineering Chemistry Research, 2013, 52, 15481-15487.	1.8	60
42	Vapor-phase methanol and ethanol coupling reactions on CuMgAl mixed metal oxides. Applied Catalysis A: General, 2013, 455, 234-246.	2.2	51
43	Lattice-Matched Bimetallic CuPd-Graphene Nanocatalysts for Facile Conversion of Biomass-Derived Polyols to Chemicals. ACS Nano, 2013, 7, 1309-1316.	7.3	112
44	Activity and Selectivity of Base Promoted Mono and Bimetallic Catalysts for Hydrogenolysis of Xylitol and Sorbitol. ACS Symposium Series, 2013, , 273-285.	0.5	6
45	Multiphase Catalytic Hydrogenolysis/Hydrodeoxygenation Processes for Chemicals from Renewable Feedstocks: Kinetics, Mechanism, and Reaction Engineering. Industrial & Engineering Chemistry Research, 2013, 52, 15226-15243.	1.8	35
46	Aqueous Phase Hydrogenation of Acetic Acid and Its Promotional Effect on <i>p</i> -Cresol Hydrodeoxygenation. Energy & Fuels, 2013, 27, 487-493.	2.5	76
47	Atom Economical Aqueous-Phase Conversion (APC) of Biopolyols to Lactic Acid, Glycols, and Linear Alcohols Using Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2013, 1, 1453-1462.	3.2	59
48	Ultraviolet–Visible Spectroscopy and Temperature-Programmed Techniques as Tools for Structural Characterization of Cu in CuMgAlOxMixed Metal Oxides. Journal of Physical Chemistry C, 2012, 116, 18207-18221.	1.5	43
49	Homogeneous Catalytic Carbonylation and Hydroformylation for Synthesis of Industrial Chemicals. Topics in Catalysis, 2012, 55, 439-445.	1.3	26
50	Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid. ACS Catalysis, 2011, 1, 548-551.	5.5	147
51	Catalytic Asymmetric Transfer Hydrogenation of Ketones Using [Ru(p-cymene)Cl2]2 with Chiral Amino Alcohol Ligands. Catalysis Letters, 2010, 138, 231-238.	1.4	17
52	Heterogenized copper catalysts for the amination of arylhalide: Synthesis, characterization and catalytic applications. Applied Catalysis A: General, 2010, 372, 73-81.	2.2	10
53	Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition. Catalysis Today, 2010, 156, 31-37.	2.2	157
54	Supercritical Deoxygenation of a Model Bio-Oil Oxygenate. Industrial & Engineering Chemistry Research, 2010, 49, 10852-10858.	1.8	10

Raghunath V Chaudhari

#	Article	IF	CITATIONS
55	Kinetic Modeling of Aqueous-Phase Glycerol Hydrogenolysis in a Batch Slurry Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 10826-10835.	1.8	66
56	Hydroesterification of 2-vinyl-6-methoxynaphthalene using palladium complexes containing chelating nitrogen ligands. Journal of Molecular Catalysis A, 2009, 307, 134-141.	4.8	12
57	Kinetics of arylation of 3-bromo-benzophenone with n-butylacrylate using NC palladacycle catalyst. Journal of Molecular Catalysis A, 2009, 309, 111-116.	4.8	2
58	NC palladacycles in the Heck arylation of ethylene: Synthesis, structure and their reactivity. Journal of Organometallic Chemistry, 2009, 694, 683-690.	0.8	28
59	Hydroformylation of 1,4-Diacetoxy-2-butene Using HRh(CO)(PPh ₃) ₃ Tethered on Alumina as a Catalyst: Kinetic Study. Industrial & Engineering Chemistry Research, 2009, 48, 9479-9489.	1.8	5
60	Ultrasound promoted asymmetric transfer hydrogenation of ketones using Ru(II)arene/amino alcohol catalyst system. Ultrasonics Sonochemistry, 2008, 15, 289-293.	3.8	12
61	Hydroformylation and carbonylation processes: new trends in the synthesis of pharmaceuticals. Current Opinion in Drug Discovery & Development, 2008, 11, 820-8.	1.9	1
62	Environmentally Benign Catalytic Hydroformylationâ^'Oxidation Route for Naproxen Synthesis. Industrial & Engineering Chemistry Research, 2007, 46, 8480-8489.	1.8	11
63	Biphasic Hydroformylation of 1,4-Diacetoxy-2-butene:  A Kinetic Study. Industrial & Engineering Chemistry Research, 2007, 46, 8629-8637.	1.8	7
64	Kinetics of Reductive Alkylation ofp-Phenylenediamine with Methyl Ethyl Ketone Using 3% Pt/Al2O3Catalyst in a Slurry Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 3243-3254.	1.8	14
65	{}Preface:Â CAMURE-6 & ISMR-5 Symposium in Pune, India. Industrial & Engineering Chemistry Research, 2007, 46, 8291-8291.	1.8	Ο
66	Kinetics of vinylation of 4′-bromoacetophenone with n-butyl acrylate using palladacycle catalyst. Journal of Molecular Catalysis A, 2007, 270, 144-152.	4.8	6
67	Ossification: A new approach to immobilize metal complex catalysts—applications to carbonylation and Suzuki coupling reactions. Journal of Catalysis, 2006, 242, 231-238.	3.1	14
68	Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol. Journal of Organometallic Chemistry, 2005, 690, 1677-1681.	0.8	18
69	Carbonylation of Alkynes, Alkenes and Alcohols using Metal Complex Catalysts. Catalysis Surveys From Asia, 2005, 9, 193-205.	1.0	29
70	New Route for the Synthesis of Propylene Glycols via Hydroformylation of Vinyl Acetate. Industrial & Engineering Chemistry Research, 2005, 44, 9601-9608.	1.8	17
71	Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite: Excellent Catalysts for Hydrogenation and Heck Reactions. Chemistry of Materials, 2004, 16, 3714-3724.	3.2	351
72	Modeling of hydrogenation of maleic acid in a bubble-column slurry reactor. AICHE Journal, 2003, 49, 3199-3212.	1.8	5

#	Article	IF	CITATIONS
73	Gold Nanoparticles Assembled on Amine-Functionalized Naâ^'Y Zeolite:Â A Biocompatible Surface for Enzyme Immobilization. Langmuir, 2003, 19, 3858-3863.	1.6	90
74	Anchored Pd Complex in MCM-41 and MCM-48:Â Novel Heterogeneous Catalysts for Hydrocarboxylation of Aryl Olefins and Alcohols. Journal of the American Chemical Society, 2002, 124, 9692-9693.	6.6	166
75	Copper-catalyzed amination of aryl halides: single-step synthesis of triarylamines. Tetrahedron Letters, 2002, 43, 7143-7146.	0.7	164