Siro Casolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333988/publications.pdf Version: 2024-02-01

SIDO CASOLO

#	Article	IF	CITATIONS
1	Seismic response of a masonry church in Central Italy: the role of interventions on the roof. Bulletin of Earthquake Engineering, 2021, 19, 1151-1179.	4.1	19
2	A linear-elastic heuristic-molecular modelling for plane isotropic micropolar and auxetic materials. International Journal of Solids and Structures, 2021, 224, 111042.	2.7	7
3	Macroscale modelling of the orthotropic shear damage in the dynamics of masonry towers by RBSM. Engineering Failure Analysis, 2021, 130, 105744.	4.0	4
4	Explicit Dynamic Analysis by a Rigid Body-Spring Model of Impact Loads of Artillery on Middle Age Fortifications. Buildings, 2021, 11, 607.	3.1	2
5	Presentation and validation of a specific RBSM approach for the meso-scale modelling of in-plane masonry-infills in RC frames. International Journal of Masonry Research and Innovation, 2020, 5, 366.	0.4	3
6	A Full Orthotropic Bond-Based Peridynamic Formulation for Linearly Elastic Solids. Lecture Notes in Mechanical Engineering, 2020, , 1257-1280.	0.4	0
7	Modelling the response of a laminated tempered glass for different configurations of damage by a rigid body spring model. Engineering Fracture Mechanics, 2019, 218, 106596.	4.3	11
8	A full orthotropic micropolar peridynamic formulation for linearly elastic solids. International Journal of Mechanical Sciences, 2019, 160, 140-155.	6.7	38
9	Testing masonry blockwork panels for orthotropic shear strength. Construction and Building Materials, 2019, 214, 74-92.	7.2	17
10	A bond-based micropolar peridynamic model with shear deformability: Elasticity, failure properties and initial yield domains. International Journal of Solids and Structures, 2019, 160, 201-231.	2.7	76
11	ANALYSIS OF DAMAGE DUE TO ARTILLERY STRIKES ON TWO TYPES OF FORTRESS TYPICAL OF THE MIDDLE AGES AND OF THE RENAISSANCE PERIODS. , 2019, , .		1
12	Modelling laminated glass beam failure via stochastic rigid body-spring model and bond-based peridynamics. Engineering Fracture Mechanics, 2018, 190, 331-346.	4.3	19
13	Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures. Meccanica, 2018, 53, 1819-1855.	2.0	34
14	A specific out-of-plane model for the dynamic analysis of masonry façades and estimation of cumulative seismic damage. Procedia Structural Integrity, 2018, 11, 20-27.	0.8	1
15	Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica, 2018, 53, 3495-3515.	2.0	14
16	Kinematic collapse load calculator: Circular arches. SoftwareX, 2018, 7, 174-179.	2.6	25
17	Estimating laminated glass beam strength via stochastic Rigid Body-Spring Model. Composite Structures, 2017, 172, 61-72.	5.8	7
18	Influence of soil deformability on the seismic response of a masonry tower. Bulletin of Earthquake Engineering, 2017, 15, 1991-2014.	4.1	56

SIRO CASOLO

#	Article	IF	CITATIONS
19	A numerical study on the cumulative outâ€ofâ€plane damage to church masonry façades due to a sequence of strong ground motions. Earthquake Engineering and Structural Dynamics, 2017, 46, 2717-2737.	4.4	34
20	HOMOGENIZED RIGID BODY AND SPRING MODEL (RBSM) FOR THE NON-LINEAR DYNAMIC ANALYSIS OF HISTORIC MASONRY CHURCH FACADES. , 2017, , .		1
21	SEISMIC MODELLING AND ANALYSIS OF MASONRY BUILDING IN AGGREGATE: A CASE STUDY. , 2017, , .		0
22	Non-linear dynamic analyses of 3D masonry structures by means of a homogenized rigid body and spring model (HRBSM). AIP Conference Proceedings, 2016, , .	0.4	3
23	ANTAEUS Project for the Regional Vulnerability Assessment of the Current Building Stock in Historical Centers. International Journal of Architectural Heritage, 2016, 10, 20-43.	3.1	41
24	A Multi-Level Approach for the Numerical Modelling of Complex Monumental Buildings. Advances in Civil and Industrial Engineering Book Series, 2015, , 546-575.	0.2	1
25	Comparison between seismic retrofitting solutions for existing reinforced concrete buildings: a case study. International Journal of Structural Engineering, 2014, 5, 242.	0.4	2
26	AN ANALYTICAL APPROACH FOR ASSESSMENT OF THE EFFECTS OF INFILL PANELS IN RC FRAMES. , 2014, , .		1
27	NON-LINEAR DYNAMIC ANALYSIS OF MASONRY TOWERS UNDER NATURAL ACCELEROGRAMS ACCOUNTING FOR SOIL-STRUCTURE INTERACTION. , 2014, , .		2
28	Nonlinear analysis of outâ€ofâ€plane masonry façades: full dynamic versus pushover methods by rigid body and spring model. Earthquake Engineering and Structural Dynamics, 2013, 42, 499-521.	4.4	44
29	Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture. Construction and Building Materials, 2013, 40, 330-351.	7.2	60
30	Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Engineering Structures, 2013, 49, 465-490.	5.3	121
31	About the Reliability of Punching Verifications in Reinforced Concrete Flat Slabs. Open Construction and Building Technology Journal, 2013, 7, 74-87.	0.7	5
32	Seismic Assessment of a Medieval Masonry Tower in Northern Italy by Limit, Nonlinear Static, and Full Dynamic Analyses. International Journal of Architectural Heritage, 2012, 6, 489-524.	3.1	98
33	Maniace Castle in Syracuse, Italy: Comparison Between Present Structural Situation and Hypothetical Original Configuration by Means of Full 3D FE Models. Open Civil Engineering Journal, 2012, 6, 173-187.	0.8	4
34	A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded. Engineering Structures, 2010, 32, 2352-2366.	5.3	57
35	Seismic analysis and strengthening design of a masonry monument by a rigid body spring model: The "Maniace Castle―of Syracuse. Engineering Structures, 2009, 31, 1447-1459.	5.3	52
36	Macroscale modelling of microstructure damage evolution by a rigid body and spring model. Journal of Mechanics of Materials and Structures, 2009, 4, 551-570.	0.6	40

SIRO CASOLO

#	Article	IF	CITATIONS
37	Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage. Earthquake Engineering and Structural Dynamics, 2007, 36, 1029-1048.	4.4	92
38	Seismic investigation on the cathedral of Syracuse by finite elements and by a specific rigid body and spring model. WIT Transactions on the Built Environment, 2007, , .	0.0	7
39	Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. International Journal of Solids and Structures, 2006, 43, 475-496.	2.7	77
40	Modelling in-plane micro-structure of masonry walls by rigid elements. International Journal of Solids and Structures, 2004, 41, 3625-3641.	2.7	80
41	SIGNIFICANT GROUND MOTION PARAMETERS FOR EVALUATION OF THE SEISMIC PERFORMANCE OF SLENDER MASONRY TOWERS. Journal of Earthquake Engineering, 2001, 5, 187-204.	2.5	19
42	Title is missing!. Journal of Earthquake Engineering, 2001, 5, 187.	2.5	9
43	Modelling the out-of-plane seismic behaviour of masonry walls by rigid elements. Earthquake Engineering and Structural Dynamics, 2000, 29, 1797-1813.	4.4	44
44	Analysis of Seismic Damage Patterns in Old Masonry Church Facades. Earthquake Spectra, 2000, 16, 757-773.	3.1	23
45	Rigid element model for non-linear analysis of masonry façades subjected to out-of-plane loading. Communications in Numerical Methods in Engineering, 1999, 15, 457-468.	1.3	27
46	A THREE-DIMENSIONAL MODEL FOR VULNERABILITY ANALYSIS OF SLENDER MEDIEVAL MASONRY TOWERS. Journal of Earthquake Engineering, 1998, 2, 487-512.	2.5	46
47	Spectral analysis of volcanic tremor associated with the 1993 paroxysmal events at Stromboli. Geological Society Special Publication, 1996, 110, 373-381	1.3	2