Abdel Salam Hamdy Makhlouf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339862/publications.pdf

Version: 2024-02-01

86 papers

3,863 citations

33 h-index 59 g-index

95 all docs 95 docs citations 95 times ranked

4039 citing authors

#	Article	IF	CITATIONS
1	The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 2017, 7, 1-14.	9.1	444
2	Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: a review. Critical Reviews in Environmental Science and Technology, 2016, 46, 93-118.	12.8	262
3	A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. Journal of Nanostructure in Chemistry, 2015, 5, 227-236.	9.1	177
4	Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids, 2016, 218, 191-197.	4.9	141
5	MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. Journal of Molecular Liquids, 2018, 258, 345-353.	4.9	136
6	Nanoparticles as Adsorbent; A Positive Approach for Removal of Noxious Metal Ions: A Review. Science Technology and Development, 2015, 34, 195-214.	0.3	127
7	Facile route synthesis of novel graphene oxide- \hat{l}^2 -cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. Journal of Molecular Liquids, 2017, 237, 466-472.	4.9	112
8	Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 2006, 60, 2633-2637.	2.6	98
9	Stimuli-responsive Polyelectrolyte Multilayers for fabrication of self-healing coatings – A review. Surface and Coatings Technology, 2016, 303, 406-424.	4.8	91
10	Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Materials Science and Engineering C, 2016, 60, 143-150.	7.3	90
11	Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. Journal of Molecular Liquids, 2020, 298, 112001.	4.9	83
12	Novel, Facile, Single-Step Technique of Polymer/TiO ₂ Nanofiber Composites Membrane for Photodegradation of Methylene Blue. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13329-13341.	8.0	80
13	Corrosion behavior of electroless Ni–P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution. Surface and Coatings Technology, 2007, 202, 162-171.	4.8	78
14	Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochimica Acta, 2011, 56, 2493-2502.	5.2	75
15	Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Progress in Organic Coatings, 2011, 72, 387-393.	3.9	74
16	Environmentally compliant silica conversion coatings prepared by sol–gel method for aluminum alloys. Surface and Coatings Technology, 2006, 201, 401-407.	4.8	68
17	Corrosion protection of aluminum composites by silicate/cerate conversion coating. Surface and Coatings Technology, 2006, 200, 3786-3792.	4.8	63
18	Intelligent self-healing corrosion resistant vanadia coating for AA2024. Thin Solid Films, 2011, 520, 1668-1678.	1.8	61

#	Article	IF	CITATIONS
19	Vanadia-based coatings of self-repairing functionality for advanced magnesium Elektron ZE41 Mg–Zn–rare earth alloy. Surface and Coatings Technology, 2012, 206, 3686-3692.	4.8	57
20	Electrochemical impedance studies of sol–gel based ceramic coatings systems in 3.5% NaCl solution. Electrochimica Acta, 2007, 52, 3310-3316.	5.2	56
21	Chrome-free zirconia-based protective coatings for magnesium alloys. Surface and Coatings Technology, 2010, 204, 2834-2840.	4.8	55
22	Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofibers for bone tissue engineering. Chemical Engineering Journal, 2014, 254, 612-622.	12.7	55
23	Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol–gel method for aluminum alloys. Journal of Materials Processing Technology, 2007, 181, 76-80.	6.3	50
24	Novel smart stannate based coatings of self-healing functionality for AZ91D magnesium alloy. Electrochimica Acta, 2013, 97, 296-303.	5.2	48
25	Effect of surface preparation prior to cerium pre-treatment on the corrosion protection performance of aluminum composites. Journal of Applied Electrochemistry, 2005, 35, 473-478.	2.9	45
26	A Green, Simple Chemical Route for the Synthesis of Pure Nanocalcite Crystals. Crystal Growth and Design, 2015, 15, 573-580.	3.0	45
27	The effect of surface modification and stannate concentration on the corrosion protection performance of magnesium alloys. Surface and Coatings Technology, 2008, 203, 240-249.	4.8	44
28	Evaluation of corrosion and erosion–corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions. Electrochimica Acta, 2007, 52, 7068-7074.	5.2	43
29	A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants. Materials Science and Engineering C, 2015, 49, 681-690.	7.3	43
30	Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Materials Science and Engineering C, 2016, 58, 1232-1241.	7.3	43
31	Nanocoatings and ultra-thin films. , 2011, , .		40
32	The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution. Materials Letters, 2007, 61, 2827-2832.	2.6	38
33	Electroless deposition of ternary Ni–P alloy coatings containing tungsten or nano-scattered alumina composite on steel. Journal of Applied Electrochemistry, 2008, 38, 385-394.	2.9	36
34	Corrosion behavior of nitride layer obtained on AISI 316L stainless steel via simple direct nitridation route at low temperature. Materials Chemistry and Physics, 2011, 126, 507-514.	4.0	36
35	Electrochemical behavior of diamond-like-carbon coatings deposited on AlTiC (Al2O3+TiC) ceramic composite substrate in HCl solution. Electrochimica Acta, 2011, 56, 1554-1562.	5. 2	36
36	Industrial Applications for Intelligent Polymers and Coatings. , 2016, , .		36

#	Article	lF	CITATIONS
37	A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys. Progress in Organic Coatings, 2006, 56, 146-150.	3.9	32
38	Fabrication of durable high performance hybrid nanofiber scaffolds for bone tissue regeneration using a novel, simple in situ deposition approach of polyvinyl alcohol on electrospun nylon 6 nanofibers. Materials Letters, 2015, 147, 25-28.	2.6	30
39	Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold. Arabian Journal of Chemistry, 2017, 10, 240-252.	4.9	30
40	Alkaline-Based Surface Modification Prior to Ceramic-Based Cerate Conversion Coatings for Magnesium AZ91D. Electrochemical and Solid-State Letters, 2007, 10, C21.	2.2	28
41	Corrosion mitigation of rare-earth metals containing magnesium EV31A-T6 alloy via chrome-free conversion coating treatment. Electrochimica Acta, 2013, 108, 852-859.	5.2	28
42	Corrosion protection of AA6061 T6-10 % Al2O3 composite by molybdate conversion coatings. Journal of Applied Electrochemistry, 2005, 35, 467-472.	2.9	26
43	Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes: central composite design optimization. Analytical and Bioanalytical Chemistry, 2017, 409, 1079-1092.	3.7	26
44	Recent Advances in Nanocomposite Coatings for Corrosion Protection Applications., 2015,, 515-549.		25
45	Removal of linear alkyl benzene sulfonate from aqueous solutions by functionalized multi-walled carbon nanotubes. Journal of Molecular Liquids, 2016, 213, 339-344.	4.9	25
46	Improving the corrosion protection of AA6061 T6–10% Al2O3 using new surface pre-treatments prior to fluoropolymer coatings. Surface and Coatings Technology, 2002, 155, 184-189.	4.8	24
47	Novel bone regeneration matrix for next-generation biomaterial using a vertical array of carbonated hydroxyapatite nanoplates coated onto electrospun nylon 6 nanofibers. Materials Letters, 2014, 137, 378-381.	2.6	24
48	Enhancing the corrosion resistance of magnesium alloy AZ91D in 3.5 per cent NaCl solution by cerate conversion coatings. Anti-Corrosion Methods and Materials, 2006, 53, 367-373.	1.5	23
49	Novel, facile, and fast technique for synthesis of AgCl nanorods loaded on activated carbon for removal of methylene blue dye. Chemical Engineering Research and Design, 2016, 103, 212-226.	5.6	23
50	Corrosion protection of AA6061 T6 by fluoropolymer coatings in NaCl solution. Surface and Coatings Technology, 2002, 155, 176-183.	4.8	21
51	Growth and characterization of anodic films on aluminum alloys in 5-sulfosalicylic acid solution. Surface and Coatings Technology, 2006, 200, 5071-5076.	4.8	20
52	Synthesis of uranium nitride by a mechanically induced gas–solid reaction. Journal of Nuclear Materials, 2008, 381, 309-311.	2.7	20
53	Hydroxyquinoline/nano-graphene oxide composite coating of self-healing functionality on treated Mg alloys AZ31. Surface and Coatings Technology, 2020, 385, 125395.	4.8	20
54	In vitro bioactivity of implantable Ti materials coated with PVAc membrane layer. Materials Letters, 2014, 126, 267-270.	2.6	18

#	Article	IF	CITATIONS
55	Recent advances in polyaniline (PANI)-based organic coatings for corrosion protection. , 2014, , 459-486.		17
56	Corrosion protection performance of nanoâ€particles thinâ€films containing vanadium ions formed on aluminium alloys. Anti-Corrosion Methods and Materials, 2006, 53, 240-245.	1.5	16
57	Facile preparation of titanium dioxide micro/nanofibers and tubular structures by air jet spinning. Ceramics International, 2014, 40, 15403-15409.	4.8	16
58	Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications. European Polymer Journal, 2019, 112, 555-568.	5.4	16
59	Fundamentals ofÂWaste Recycling for Nanomaterial Manufacturing. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 3-24.	1.6	15
60	The effect of alkaline etching time on the anticorrosion performance of vanadia film formed on high strength AA2024 in chloride media. Journal of Materials Science, 2012, 47, 3784-3792.	3.7	14
61	Eco-friendly, cost-effective silica-based protective coating for an A6092/SiC/17.5p aluminum metal matrix composite. Electrochimica Acta, 2013, 89, 749-755.	5. 2	14
62	Smart Stimuli-Responsive Nano-sized Hosts for Drug Delivery. , 2016, , 1-26.		14
63	The effect of grain refining and phosphides formation on the performance of advanced nanocomposite and ternary alloy coatings on steel. Materials Letters, 2012, 80, 191-194.	2.6	13
64	Electrochemical behavior of a discontinuously A6092/SiC/17.5p metal matrix composite in chloride containing solution. Electrochimica Acta, 2013, 88, 129-134.	5.2	13
65	Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys. , 2015, , 537-555.		13
66	Chrome-free pretreatment for aluminium composites. Surface and Interface Analysis, 2002, 34, 160-163.	1.8	12
67	Corrosion Protection Performance via Nano-Coatings Technologies. Recent Patents on Materials Science, 2010, 3, 258-267.	0.5	12
68	Enhancing corrosion resistance of aluminum composites in 3.5% NaCl using pigmented epoxy fluoropolymer. Progress in Organic Coatings, 2006, 55, 218-224.	3.9	11
69	Techniques for synthesizing and applying smart coatings for material protection. , 2014, , 56-74.		11
70	Influence of hot forging and alloying with Al on the electrochemical behavior and mechanical properties of austenitic stainless steel. Materials & Design, 2014, 57, 538-545.	5.1	10
71	Synthesis of dysprosium and cerium nitrides by a mechanically induced gas–solid reaction. Journal of Nuclear Materials, 2009, 392, 121-124.	2.7	9
72	Novel approaches in designing high performance nano and nano-composite coatings for industrial applications. International Journal of Nanomanufacturing, 2009, 4, 235.	0.3	8

#	Article	IF	CITATIONS
73	Comparative study of micro-arc oxidation treatment for AM, AZ and MZ magnesium alloys. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 620-629.	1.1	8
74	A facile manufacturing of Ag/SiO2 nanofibers and nanoparticles composites via a simple hydrothermal plasma method. Ceramics International, 2015, 41, 12447-12452.	4.8	6
75	Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications. , 2016, , 437-477.		5
76	Effect of changing the silica coating pH on the corrosion characteristics of A6092/SiC/17.5p aluminum metal matrix composite in chloride media. Electrochimica Acta, 2013, 107, 518-524.	5.2	4
77	Protective coatings for automotive, aerospace and military applications: current prospects and future trends., 2014,, 121-131.		4
78	Electrochemical studies on the film formed by direct nitridation of AA2024 in a KNO3 salt bath at low temperature. Materials Chemistry and Physics, 2011, 127, 253-258.	4.0	3
79	Deposition, characterization and electrochemical properties of silica-phosphate composite coatings formed over A6092/SiC/17.5p aluminum metal matrix composite. Electrochimica Acta, 2013, 109, 168-172.	5.2	3
80	A Novel Approach for Facile Synthesis of Biocompatible PVA-Coated PLA Nanofibers as Composite Membrane Scaffolds for Enhanced Osteoblast Proliferation. , 2015, , 87-113.		3
81	Effect of Nano-Additives (Al2O3 and NaF) on the Performance of Ceramic Coatings Formed by Microarc Oxidation on Magnesium Alloys., 2015,, 389-401.		2
82	A simple single-step permanganate surface treatment for rare-earth containing magnesium alloys. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 613-619.	1.1	2
83	Nanocomposites Materials and Their Applications: Current and Future Trends. Engineering Materials, 2022, , 3-14.	0.6	1
84	Smart stannate-based self-healing coatings for corrosion protection of magnesium alloys. , 2014, , 275-286.		0
85	History of High-Performance Paints and Coatings of Unique Characteristics., 2015,, 321-332.		0
86	Fluoropolymer coatings for corrosion protection in highly aggressive environments., 2008,, 212-224.		0