Giovanni Ponti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recurrent <i>NF1</i> gene variants and their genotype/phenotype correlations in patients with Neurofibromatosis type I. Genes Chromosomes and Cancer, 2022, 61, 10-21.	2.8	6
2	Liquid biopsy with cell free DNA: new horizons for prostate cancer. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 60-76.	6.1	27
3	Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients. Clinical Chemistry and Laboratory Medicine, 2021, 59, e354-e357.	2.3	24
4	COVIDâ€19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. Journal of Clinical Laboratory Analysis, 2021, 35, e23798.	2.1	32
5	Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19. Medical Hypotheses, 2020, 143, 109859.	1.5	39
6	Biomarkers associated with COVID-19 disease progression. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 389-399.	6.1	570
7	Clinical, pathological and dermoscopic phenotype of MITF p.E318K carrier cutaneous melanoma patients. Journal of Translational Medicine, 2020, 18, 78.	4.4	17
8	Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers, 2020, 12, 1007.	3.7	19
9	Immunohistochemical mismatch repair proteins expression as a tool to predict the melanoma immunotherapy response. Molecular and Clinical Oncology, 2020, 12, 3-8.	1.0	9
10	Quick assessment of cell-free DNA in seminal fluid and fragment size for early non-invasive prostate cancer diagnosis. Clinica Chimica Acta, 2019, 497, 76-80.	1.1	27
11	Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Critical Reviews in Oncology/Hematology, 2019, 141, 36-42.	4.4	49
12	Seminal cell-free DNA molecular profile as a novel diagnostic and prognostic prostate cancer biomarkers. Medical Hypotheses, 2018, 114, 69.	1.5	4
13	The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clinica Chimica Acta, 2018, 479, 14-19.	1.1	46
14	Seminal Cell-Free DNA Assessment as a Novel Prostate Cancer Biomarker. Pathology and Oncology Research, 2018, 24, 941-945.	1.9	28
15	Seminal Cell Free DNA Concentration Levels Discriminate Between Prostate Cancer and Benign Prostatic Hyperplasia. Anticancer Research, 2018, 38, 5121-5125.	1.1	17
16	PTCH1 Germline Mutations and the Basaloid Follicular Hamartoma Values in the Tumor Spectrum of Basal Cell Carcinoma Syndrome (NBCCS). Anticancer Research, 2018, 38, 471-476.	1.1	9
17	Innovative use of magnesium oxide in the treatment of "neuralgia of the celiac plexus of rheumatic origin―by G. Moscati in 1923. AMHA - Acta Medico-Historica Adriatica, 2018, 16, 157-166. 	0.0	0
18	Desmoplastic melanoma: a challenge for the oncologist. Future Oncology, 2017, 13, 337-345.	2.4	6

#	Article	IF	CITATIONS
19	BRAF, NRAS and C-KIT Advanced Melanoma: Clinico-pathological Features, Targeted-Therapy Strategies and Survival. Anticancer Research, 2017, 37, 7043-7048.	1.1	33
20	BRAFp.V600E, p.V600K, and p.V600R Mutations in Malignant Melanoma. Applied Immunohistochemistry and Molecular Morphology, 2016, 24, 30-34.	1.2	5
21	Role of microsatellite instability, immunohistochemistry and mismatch repair germline aberrations in immunosuppressed transplant patients: a phenocopy dilemma in Muir-Torre syndrome. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1725-1731.	2.3	7
22	Fibroepithelioma of Pinkus: Solitary tumor or sign of a complex gastrointestinal syndrome. Molecular and Clinical Oncology, 2016, 4, 797-800.	1.0	4
23	Congenital Glioblastoma multiforme and eruptive disseminated Spitz nevi. Italian Journal of Pediatrics, 2016, 42, 47.	2.6	10
24	Wall paintings facies and their possible genetic correlates in the ancient Pompeii: A bio-anthropologic message from the past?. Gene, 2016, 589, 151-156.	2.2	4
25	Giant elephantiasis neuromatosa in the setting of neurofibromatosis type 1: A case report. Oncology Letters, 2016, 11, 3709-3714.	1.8	10
26	Oral mucosal stigmata in hereditary-cancer syndromes: From germline mutations to distinctive clinical phenotypes and tailored therapies. Gene, 2016, 582, 23-32.	2.2	18
27	Skeletal stigmata as keys to access to the composite and ancient Gorlin–Goltz syndrome history: The Egypt, Pompeii and Herculaneum lessons. Gene, 2016, 589, 104-111.	2.2	9
28	Muir–Torre Syndrome and founder mismatch repair gene mutations: A long gone historical genetic challenge. Gene, 2016, 589, 127-132.	2.2	18
29	Confocal microscopy characterization of BRAFV600E mutated melanomas. Melanoma Research, 2015, 25, 367-371.	1.2	11
30	Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clinical Genetics, 2015, 87, 507-516.	2.0	49
31	Mismatch Repair Gene Deficiency and Genetic Anticipation in Lynch Syndrome. Diseases of the Colon and Rectum, 2015, 58, 141-142.	1.3	4
32	Fordyce granules and hyperplastic mucosal sebaceous glands as distinctive stigmata in Muir–Torre syndrome patients: characterization with reflectance confocal microscopy. Journal of Oral Pathology and Medicine, 2015, 44, 552-557.	2.7	18
33	Giuseppe Moscati: a man, a physician and a scientist. AMHA - Acta Medico-Historica Adriatica, 2015, 13, 171-80.	0.0	0
34	The long road to the use of microscope in clinical medicine in vivo: from early pioneering proposals to the modern perspectives of optical biopsy. AMHA - Acta Medico-Historica Adriatica, 2015, 13, 385-92.	0.0	0
35	Hypomelanosis of Ito with a trisomy 2 mosaicism: a case report. Journal of Medical Case Reports, 2014, 8, 333.	0.8	8
36	Erratum to "Molecular Targeted Approaches for Advanced <i>BRAF</i> V600, <i>N-RAS</i> , <i>c-KIT</i> , and <i>GNAQ</i> Melanoma― Disease Markers, 2014, 2014, 1-1.	1.3	35

#	Article	IF	CITATIONS
37	High Magnification Digital Dermoscopy of Basal Cell Carcinoma: A Single-centre Study on 400 cases. Acta Dermato-Venereologica, 2014, 94, 677-682.	1.3	11
38	Molecular Targeted Approaches for Advanced <i>BRAF</i> V600, <i>N-RAS</i> , <i>c-KIT</i> , and <i>GNAQ</i> Melanomas. Disease Markers, 2014, 2014, 1-3.	1.3	9
39	Giuseppe Moscati (1880–1927): a holistic approach to medicine. Journal of Medical Biography, 2014, 22, 80-82.	0.1	3
40	Brooke–Spiegler syndrome tumor spectrumÂbeyond the skin: a patient carrying germline R936X CYLD mutation and a somatic <i>CYLD</i> mutation in BrennerÂtumor. Future Oncology, 2014, 10, 345-350.	2.4	9
41	Stem Cell Properties in Cell Cultures From Different Stage of Melanoma Progression. Applied Immunohistochemistry and Molecular Morphology, 2014, 22, 171-181.	1.2	17
42	Multiple primary melanomas versus single melanoma of the head and neck. Melanoma Research, 2014, 24, 267-272.	1.2	4
43	Muir–Torre syndrome or phenocopy? The value of the immunohistochemical expression of mismatch repair proteins in sebaceous tumors of immunocompromised patients. Familial Cancer, 2014, 13, 553-561.	1.9	13
44	Skeletal and cranio-facial signs in Gorlin syndrome from ancient Egypt to the modern age: sphenoid asymmetry in a patient with a novel <i>PTCH1</i> mutation. Future Oncology, 2014, 10, 917-925.	2.4	3
45	NF1 truncating mutations associated to aggressive clinical phenotype with elephantiasis neuromatosa and solid malignancies. Anticancer Research, 2014, 34, 3021-30.	1.1	12
46	Diagnosis of <scp>BCC</scp> by multiphoton laser tomography. Skin Research and Technology, 2013, 19, e297-304.	1.6	34
47	Malignant and benign tumors associated with multiple primary melanomas: just the starting block for the involvement of <i><scp>MITF</scp>,<scp> PTEN</scp></i> and <i><scp>CDKN</scp>2A</i> in multiple cancerogenesis?. Pigment Cell and Melanoma Research, 2013, 26, 755-757.	3.3	3
48	Highâ€resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy. Skin Research and Technology, 2013, 19, e433-43.	1.6	25
49	Microsatellite instability and mismatch repair protein expression in sebaceous tumors, keratocanthoma, and basal cell carcinomas with sebaceous differentiation in Muir-Torre syndrome. Journal of the American Academy of Dermatology, 2013, 68, 509-510.	1.2	13
50	Cancer-associated genodermatoses: Skin neoplasms as clues to hereditary tumor syndromes. Critical Reviews in Oncology/Hematology, 2013, 85, 239-256.	4.4	63
51	Is confocal microscopy a valuable tool in diagnosing nodular lesions? A study of 140 cases. British Journal of Dermatology, 2013, 169, 58-67.	1.5	105
52	Proteomic Analysis of <i>PTCH1</i> +/â^ Fibroblast Lysate and Conditioned Culture Media Isolated from the Skin of Healthy Subjects and Nevoid Basal Cell Carcinoma Syndrome Patients. BioMed Research International, 2013, 2013, 1-8.	1.9	6
53	Clinical utility gene card for: Gorlin Syndrome - update 2013. European Journal of Human Genetics, 2013, 21, 1187-1187.	2.8	13
54	Fluorescence in-situ hybridization and dermoscopy in the assessment of controversial melanocytic tumors. Melanoma Research, 2013, 23, 474-480.	1.2	9

#	Article	IF	CITATIONS
55	Can noninvasive imaging tools potentially predict the risk of ulceration in invasive melanomas showing blue and black colors?. Melanoma Research, 2013, 23, 125-131.	1.2	27
56	The somatic affairs of <i>BRAF</i> : tailored therapies for advanced malignant melanoma and orphan non-V600E (V600R-M) mutations. Journal of Clinical Pathology, 2013, 66, 441-445.	2.0	21
57	High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence lifetime imaging. Skin Research and Technology, 2013, 19, 194-204.	1.6	18
58	Hereditary trichilemmal cysts: a proposal for the assessment of diagnostic clinical criteria. Clinical Genetics, 2013, 84, 65-69.	2.0	18
59	Multiphoton Laser Tomography and Fluorescence Lifetime Imaging of Melanoma: Morphologic Features and Quantitative Data for Sensitive and Specific Non-Invasive Diagnostics. PLoS ONE, 2013, 8, e70682.	2.5	68
60	The dermoscopic variability of pigment network in melanoma in situ. Melanoma Research, 2012, 22, 151-157.	1.2	25
61	Variegated Dermoscopy of in situ Melanoma. Dermatology, 2012, 224, 262-270.	2.1	28
62	Italian Euromelanoma Day Screening Campaign (2005–2007) and the planning of melanoma screening strategies. European Journal of Cancer Prevention, 2012, 21, 89-95.	1.3	13
63	Patched homolog 1 gene mutation (p.G1093R) induces nevoid basal cell carcinoma syndrome and non-syndromic keratocystic odontogenic tumors: A case report. Oncology Letters, 2012, 4, 241-244.	1.8	8
64	Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for nonâ€invasive diagnostics. Experimental Dermatology, 2012, 21, 831-836.	2.9	45
65	Ameloblastoma: a neglected criterion for nevoid basal cell carcinoma (Gorlin) syndrome. Familial Cancer, 2012, 11, 411-418.	1.9	19
66	Unicystic ameloblastoma associated with the novel K729M PTCH1 mutation in a patient with nevoid basal cell carcinoma (Gorlin) syndrome. Cancer Genetics, 2012, 205, 177-181.	0.4	10
67	Value and prognostic significance of mitotic rate in a retrospective series of pT1 cutaneous malignant melanoma patients. Cancer Epidemiology, 2012, 36, 303-305.	1.9	8
68	Overwhelming response to Dabrafenib in a patient with double BRAF mutation (V600E; V600M) metastatic malignant melanoma. Journal of Hematology and Oncology, 2012, 5, 60.	17.0	20
69	Diagnostic and pathogenetic role of café-au-lait macules in nevoid basal cell carcinoma syndrome. Hereditary Cancer in Clinical Practice, 2012, 10, 15.	1.5	6
70	Microscopic Margins of Resection Influence Primary Gastrointestinal Stromal Tumor Survival. Oncology Research and Treatment, 2012, 35, 645-648.	1.2	22
71	Novel PTCH1 Mutations in Patients with Keratocystic Odontogenic Tumors Screened for Nevoid Basal Cell Carcinoma (NBCC) Syndrome. PLoS ONE, 2012, 7, e43827.	2.5	20
72	p16 immunohistochemistry of multiple primary melanomas as screening to identify Familial Melanoma Syndrome. International Journal of Dermatology, 2012, 51, 488-492.	1.0	2

#	Article	IF	CITATIONS
73	Brookeâ€Spiegler syndrome: report of two cases not associated with a mutation in the <i>CYLD</i> and <i>PTCH</i> tumorâ€suppressor genes. Journal of Cutaneous Pathology, 2012, 39, 366-371.	1.3	25
74	Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Skin Research and Technology, 2011, 17, 295-303.	1.6	46
75	Clinico-pathological and biomolecular findings in Italian patients with multiple cutaneous neurofibromas. Hereditary Cancer in Clinical Practice, 2011, 9, 6.	1.5	11
76	Leser-Trélat syndrome in patients affected by six multiple metachronous primitive cancers. Journal of Hematology and Oncology, 2010, 3, 2.	17.0	34
77	Cytogenetic abnormalities and clinical features in a patient cohort affected by three or more synchronous or metachronous primitive malignancies. Cancer Genetics and Cytogenetics, 2010, 200, 1-7.	1.0	2
78	Reticular grey-blue areas of regression as a dermoscopic marker of melanoma <i>in situ</i> . British Journal of Dermatology, 2010, 163, 302-309.	1.5	40
79	Gastrointestinal stromal tumor and other primary metachronous or synchronous neoplasms as a suspicion criterion for syndromic setting. Oncology Reports, 2010, 23, 437-44.	2.6	26
80	Attitude of the Italian general population towards prevention and screening of the most common tumors, with special emphasis on colorectal malignancies. Internal and Emergency Medicine, 2009, 4, 213-220.	2.0	13
81	"Collision―metastasis from unknown primary squamous cell carcinoma and papillary microcarcinoma of thyroid presenting as lateral cervical cystic mass. Auris Nasus Larynx, 2009, 36, 372-375.	1.2	7
82	Complete pathological response in a patient with multiple liver metastases from colon cancer treated with Folfox-6 chemotherapy plus bevacizumab: a case report. Journal of Hematology and Oncology, 2009, 2, 35.	17.0	6
83	Gastrointestinal stromal tumor and other primary metachronous or synchronous neoplasms as a suspicion criterion for syndromic setting. Oncology Reports, 2009, 23, .	2.6	16
84	Malignant melanoma in patients with hereditary nonpolyposis colorectal cancer. British Journal of Dermatology, 2008, 159, 162-168.	1.5	27
85	The impact of histopathologic diagnosis on the proper management of testis neoplasms. Nature Clinical Practice Oncology, 2008, 5, 619-622.	4.3	8
86	Wnt Pathway, Angiogenetic and Hormonal Markers in Sporadic and Familial Adenomatous Polyposis-associated Juvenile Nasopharyngeal Angiofibromas (JNA). Applied Immunohistochemistry and Molecular Morphology, 2008, 16, 173-178.	1.2	38
87	Genotype-phenotype correlations in individuals with a founder mutation in the MLH1 gene and hereditary non-polyposis colorectal cancer. Scandinavian Journal of Gastroenterology, 2007, 42, 746-753.	1.5	10
88	BRAF Mutations in Multiple Sebaceous Hyperplasias of Patients Belonging to MYH-Associated Polyposis Pedigrees. Journal of Investigative Dermatology, 2007, 127, 1387-1391.	0.7	17
89	Frequency of constitutional <i>MSH6 </i> mutations in a consecutive series of families with clinical suspicion of HNPCC. Clinical Genetics, 2007, 72, 230-237.	2.0	16
90	Epidemiology of colorectal cancer: the 21-year experience of a specialised registry. Internal and Emergency Medicine, 2007, 2, 269-279.	2.0	27

#	Article	IF	CITATIONS
91	Immunohistochemical Expression of MYH Protein Can Be Used to Identify Patients With MYH-Associated Polyposis. Gastroenterology, 2006, 131, 439-444.	1.3	24
92	Value of MLH1 and MSH2 Mutations in the Appearance of Muir–Torre Syndrome Phenotype in HNPCC Patients Presenting Sebaceous Gland Tumors or Keratoacanthomas. Journal of Investigative Dermatology, 2006, 126, 2302-2307.	0.7	93
93	Prognostic significance of histological features and biological parameters in stage I (pT1 and pT2) colorectal adenocarcinoma. Pathology Research and Practice, 2006, 202, 663-670.	2.3	43
94	Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations. Clinical Genetics, 2005, 68, 442-447.	2.0	76
95	Different phenotypes in Muir-Torre syndrome: clinical and biomolecular characterization in two Italian families. British Journal of Dermatology, 2005, 152, 1335-1338.	1.5	31
96	Identification of Muir–Torre syndrome among patients with sebaceous tumors and keratoacanthomas. Cancer, 2005, 103, 1018-1025.	4.1	136
97	Incidence and survival of patients with Dukes' A (stages T1 and T2) colorectal carcinoma: a 15-year population-based study. International Journal of Colorectal Disease, 2005, 20, 147-154.	2.2	20
98	Molecular Genetic Alterations and Clinical Features in Early-Onset Colorectal Carcinomas and Their Role for the Recognition of Hereditary Cancer Syndromes. American Journal of Gastroenterology, 2005, 100, 2280-2287.	0.4	66
99	Microsatellite Instability and Colorectal Cancer Prognosis. Clinical Cancer Research, 2005, 11, 8332-8340.	7.0	339
100	Muir-Torre syndrome. Lancet Oncology, The, 2005, 6, 980-987.	10.7	266
101	Trend of incidence, subsite distribution and staging of colorectal neoplasms in the 15-year experience of a specialised cancer registry. Annals of Oncology, 2004, 15, 940-946.	1.2	56
102	Genetic testing among high-risk individuals in families with hereditary nonpolyposis colorectal cancer. British Journal of Cancer, 2004, 90, 882-887.	6.4	57
103	Relationship between MUC5AC and altered expression of MLH1 protein in mucinous and non-mucinous colorectal carcinomas. Pathology Research and Practice, 2004, 200, 371-377.	2.3	26
104	A faster diagnosis of colorectal cancer in symptomatic patients is not related to a more favourable prognisis. Gastroenterology, 2000, 118, A1408.	1.3	0