Harald A Stenmark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles. ACS Omega, 2022, 7, 11353-11362.	3.5	9
2	Biophysical and molecular mechanisms of ESCRT functions, and their implications for disease. Current Opinion in Cell Biology, 2022, 75, 102062.	5.4	30
3	Integrin α11β1 and syndecan-4 dual receptor ablation attenuate cardiac hypertrophy in the pressure overloaded heart. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1057-H1071.	3.2	4
4	ESCRTed resistance to T cell attack. Trends in Immunology, 2022, , .	6.8	0
5	Divalent ligand-monovalent molecule binding. Soft Matter, 2021, 17, 5375-5383.	2.7	1
6	Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature, 2021, 591, 142-146.	27.8	140
7	The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy. Journal of Cell Science, 2021, 134, .	2.0	27
8	Should I bend or should I grow: the mechanisms of droplet-mediated autophagosome formation. Autophagy, 2021, 17, 1046-1048.	9.1	6
9	Sealing holes in cellular membranes. EMBO Journal, 2021, 40, e106922.	7.8	75
10	The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
11	JIP4 is recruited by the phosphoinositide-binding protein Phafin2 to promote recycling tubules on macropinosomes. Journal of Cell Science, 2021, 134, .	2.0	10
12	The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes. Nature Communications, 2021, 12, 6577.	12.8	17
13	ESCRT-mediated phagophore sealing during mitophagy. Autophagy, 2020, 16, 826-841.	9.1	119
14	The many functions of ESCRTs. Nature Reviews Molecular Cell Biology, 2020, 21, 25-42.	37.0	565
15	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	14.5	82
16	Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28614-28624.	7.1	21
17	Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nature Communications, 2020, 11, 2270.	12.8	156
18	Clathrin regulates Wnt/β-catenin signaling by affecting Golgi to plasma membrane transport of transmembrane proteins. Journal of Cell Science, 2020, 133, .	2.0	5

#	Article	IF	CITATIONS
19	Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nature Cell Biology, 2020, 22, 856-867.	10.3	75
20	Protrudin-mediated ER–endosome contact sites promote MT1-MMP exocytosis and cell invasion. Journal of Cell Biology, 2020, 219, .	5.2	43
21	<scp>LRRK</scp> 2 to the rescue of damaged endomembranes. EMBO Journal, 2020, 39, e106162.	7.8	9
22	WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling. Nature Communications, 2019, 10, 2850.	12.8	29
23	Centralspindlin Recruits ALIX to the Midbody during Cytokinetic Abscission in Drosophila via a Mechanism Analogous to Virus Budding. Current Biology, 2019, 29, 3538-3548.e7.	3.9	29
24	Tumor suppression by control of matrix metalloproteinase recycling. Molecular and Cellular Oncology, 2019, 6, e1646606.	0.7	1
25	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nature Communications, 2019, 10, 514.	12.8	103
26	The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathogens, 2019, 15, e1007684.	4.7	28
27	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	12.8	435
28	Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy, 2019, 15, 182-183.	9.1	32
29	Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth. ELife, 2019, 8, .	6.0	20
30	Orchestrating Nuclear Envelope Sealing during Mitosis. Developmental Cell, 2018, 47, 541-542.	7.0	0
31	<scp>ESCRT</scp> â€mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO Journal, 2018, 37, .	7.8	228
32	Centrosomal ALIX regulates mitotic spindle orientation by modulating astral microtubule dynamics. EMBO Journal, 2018, 37, .	7.8	12
33	Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nature Communications, 2018, 9, 2932.	12.8	90
34	Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. Journal of Cell Biology, 2018, 217, 3640-3655.	5.2	213
35	ESCRTs in membrane sealing. Biochemical Society Transactions, 2018, 46, 773-778.	3.4	26
36	Microenvironmental autophagy promotes tumour growth. Nature, 2017, 541, 417-420.	27.8	379

#	Article	IF	CITATIONS
37	Suppressing mTORC1 on the lysosome. EMBO Journal, 2017, 36, 1809-1810.	7.8	0
38	Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation. Nature Cell Biology, 2017, 19, 1412-1423.	10.3	28
39	PtdIns3P controls mTORC1 signaling through lysosomal positioning. Journal of Cell Biology, 2017, 216, 4217-4233.	5.2	124
40	The Abscission Checkpoint: Making It to the Final Cut. Trends in Cell Biology, 2017, 27, 1-11.	7.9	88
41	Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends in Biochemical Sciences, 2017, 42, 42-56.	7.5	362
42	Differential Roles of AXIN1 and AXIN2 in Tankyrase Inhibitor-Induced Formation of Degradasomes and β-Catenin Degradation. PLoS ONE, 2017, 12, e0170508.	2.5	24
43	Novel ESCRT functions in cell biology: spiraling out of control?. Current Opinion in Cell Biology, 2016, 41, 1-8.	5.4	78
44	Arv1 promotes cell division by recruiting IQGAP1 and myosin to the cleavage furrow. Cell Cycle, 2016, 15, 628-643.	2.6	8
45	ER–endosome contact sites in endosome positioning and protrusion outgrowth. Biochemical Society Transactions, 2016, 44, 441-446.	3.4	25
46	Phosphoinositides in Control of Membrane Dynamics. Annual Review of Cell and Developmental Biology, 2016, 32, 143-171.	9.4	240
47	Phosphoinositides in membrane contact sites. Biochemical Society Transactions, 2016, 44, 425-430.	3.4	28
48	Plasma membrane repairs by small GTPase Rab3a. Journal of Cell Biology, 2016, 213, 613-615.	5.2	4
49	ESCRT proteins restrict constitutive NF-lºB signaling by trafficking cytokine receptors. Science Signaling, 2016, 9, ra8.	3.6	64
50	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
51	Closing a gap in the nuclear envelope. Current Opinion in Cell Biology, 2016, 40, 90-97.	5.4	22
52	ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. Journal of Cell Biology, 2016, 212, 499-513.	5.2	123
53	Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity. PLoS ONE, 2016, 11, e0160507.	2.5	6
54	Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature, 2015, 522, 231-235.	27.8	339

#	Article	IF	CITATIONS
55	Src64 controls a novel actin network required for proper ring canal formation in the <i>Drosophila</i> male germline. Development (Cambridge), 2015, 142, 4107-4118.	2.5	12
56	<scp>ER</scp> –endosome contact sites: molecular compositions and functions. EMBO Journal, 2015, 34, 1848-1858.	7.8	155
57	Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy, 2015, 11, 1458-1470.	9.1	35
58	Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes. Molecular Cancer Research, 2015, 13, 1487-1501.	3.4	38
59	ALIX and ESCRT-III Coordinately Control Cytokinetic Abscission during Germline Stem Cell Division In Vivo. PLoS Genetics, 2015, 11, e1004904.	3.5	54
60	Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Cancers, 2015, 7, 1-29.	3.7	28
61	Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature, 2015, 520, 234-238.	27.8	343
62	Cellular functions of Rab GTPases at a glance. Journal of Cell Science, 2015, 128, 3171-6.	2.0	315
63	An <scp>ER</scp> clamp for endosome fission. EMBO Journal, 2015, 34, 136-137.	7.8	3
64	Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in <i>Drosophila</i> . Autophagy, 2014, 10, 2251-2268.	9.1	72
65	Association of CHMP4B and Autophagy with Micronuclei: Implications for Cataract Formation. BioMed Research International, 2014, 2014, 1-10.	1.9	49
66	SARA and RNF11 at the Crossroads of EGFR Signaling and Trafficking. Methods in Enzymology, 2014, 535, 225-247.	1.0	9
67	ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nature Cell Biology, 2014, 16, 547-557.	10.3	100
68	CK2 involvement in ESCRT-III complex phosphorylation. Archives of Biochemistry and Biophysics, 2014, 545, 83-91.	3.0	13
69	Monitoring Phosphatidylinositol 3-Phosphate in Multivesicular Endosome Biogenesis. Methods in Enzymology, 2014, 534, 3-23.	1.0	4
70	An Isoprenylation and Palmitoylation Motif Promotes Intraluminal Vesicle Delivery of Proteins in Cells from Distant Species. PLoS ONE, 2014, 9, e107190.	2.5	14
71	Phosphatidylinositol 3â€phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. BioEssays, 2013, 35, 900-912.	2.5	110
72	Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS Journal, 2013, 280, 6322-6337.	4.7	73

#	Article	IF	CITATIONS
73	Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties. Journal of Controlled Release, 2013, 168, 317-326.	9.9	44
74	Spatiotemporal control of Cindr at ring canals during incomplete cytokinesis in the Drosophila male germline. Developmental Biology, 2013, 377, 9-20.	2.0	25
75	Production of phosphatidylinositol 5â€phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Reports, 2013, 14, 57-64.	4.5	64
76	Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. Journal of Cell Biology, 2013, 202, 331-349.	5.2	154
77	ClassÂ <scp>III</scp> phosphatidylinositol 3–kinase and its catalytic product <scp>P</scp> tdlns3 <scp>P</scp> in regulation of endocytic membrane traffic. FEBS Journal, 2013, 280, 2730-2742.	4.7	85
78	TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy, 2013, 9, 1955-1964.	9.1	61
79	Molecular Mechanisms of the Membrane Sculpting ESCRT Pathway. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016766-a016766.	5.5	367
80	Antibody crossreactivity between the tumour suppressor PHLPP1 and the protoâ€oncogene β atenin. EMBO Reports, 2013, 14, 10-11.	4.5	6
81	A ZO-1/α5β1-Integrin Complex Regulates Cytokinesis Downstream of PKCε in NCI-H460 Cells Plated on Fibronectin. PLoS ONE, 2013, 8, e70696.	2.5	11
82	The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain. Journal of Cell Science, 2012, 125, 29-36.	2.0	32
83	Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochemical Journal, 2012, 441, 399-406.	3.7	134
84	The PtdIns3Pâ€Binding Protein Phafin 2 Mediates Epidermal Growth Factor Receptor Degradation by Promoting Endosome Fusion. Traffic, 2012, 13, 1547-1563.	2.7	27
85	The Rabs: A family at the root of metazoan evolution. BMC Biology, 2012, 10, 68.	3.8	17
86	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
87	p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer. Antioxidants and Redox Signaling, 2012, 17, 786-793.	5.4	162
88	Shaping development with ESCRTs. Nature Cell Biology, 2012, 14, 38-45.	10.3	111
89	Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3â€kinase activity and tumor suppression. FEBS Letters, 2012, 586, 1584-1591.	2.8	77
90	Molecular Mechanisms of Ubiquitin-Dependent Membrane Traffic. Annual Review of Biophysics, 2011, 40, 119-142.	10.0	83

#	Article	IF	CITATIONS
91	A Tumor-Associated Mutation of FYVE-CENT Prevents Its Interaction with Beclin 1 and Interferes with Cytokinesis. PLoS ONE, 2011, 6, e17086.	2.5	30
92	Cell Polarity and Migration: Emerging Role for the Endosomal Sorting Machinery. Physiology, 2011, 26, 171-180.	3.1	29
93	ESCRT Proteins and Cell Signalling. Traffic, 2011, 12, 1291-1297.	2.7	45
94	Cargoâ€Dependent Degradation of ESCRTâ€I as a Feedback Mechanism to Modulate Endosomal Sorting. Traffic, 2011, 12, 1211-1226.	2.7	14
95	Cell Differentiation: Midbody Remnants — Junk or Fate Factors?. Current Biology, 2011, 21, R958-R960.	3.9	16
96	Endocytosis and signaling. Current Opinion in Cell Biology, 2011, 23, 393-403.	5.4	249
97	Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Communicative and Integrative Biology, 2011, 4, 1-9.	1.4	151
98	Growth Signaling from Inside. Science, 2011, 334, 611-612.	12.6	1
99	A Helix for the Final Cut. Science, 2011, 331, 1533-1534.	12.6	13
100	Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Communicative and Integrative Biology, 2011, 4, 1-9.	1.4	93
101	The Rab11a GTPase Controls Toll-like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes. Immunity, 2010, 33, 583-596.	14.3	173
102	Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochemistry and Cell Biology, 2010, 133, 41-55.	1.7	98
103	ESCRT & Co. Biology of the Cell, 2010, 102, 293-318.	2.0	56
104	Protein Secretion: Unconventional Exit by Exophagy. Current Biology, 2010, 20, R415-R418.	3.9	54
105	Cindr Interacts with Anillin to Control Cytokinesis in Drosophila melanogaster. Current Biology, 2010, 20, 944-950.	3.9	50
106	Cytokinesis and cancer. FEBS Letters, 2010, 584, 2652-2661.	2.8	90
107	Corrigendum to "Cytokinesis and cancer―[FEBS Lett. 584 (2010) 2652-2661]. FEBS Letters, 2010, 584, 4128-4128	2.8	0
108	A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Experimental Cell Research, 2010, 316, 3368-3378.	2.6	163

#	Article	IF	CITATIONS
109	How a lipid mediates tumour suppression. Delivered on 29 June 2010 at the 35th FEBS Congress in Gothenburg, Sweden. FEBS Journal, 2010, 277, 4837-4848.	4.7	9
110	p62, an autophagy hero or culprit?. Nature Cell Biology, 2010, 12, 207-209.	10.3	202
111	PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nature Cell Biology, 2010, 12, 362-371.	10.3	195
112	Time-Resolved Ultrastructural Detection of Phosphatidylinositol 3-Phosphate. Journal of Histochemistry and Cytochemistry, 2010, 58, 1025-1032.	2.5	5
113	p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy, 2010, 6, 330-344.	9.1	296
114	Control of Notch-ligand endocytosis by ligand-receptor interaction. Journal of Cell Science, 2010, 123, 2931-2942.	2.0	66
115	Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late <i>Drosophila melanogaster</i> oogenesis. Journal of Cell Biology, 2010, 190, 523-531.	5.2	224
116	Autophagy as a trigger for cell death: Autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila. Autophagy, 2010, 6, 1214-1215.	9.1	61
117	<i>UVRAG</i> mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy, 2010, 6, 863-870.	9.1	63
118	Ubiquitination of \hat{I}_{\pm} -integrin cytoplasmic tails. Communicative and Integrative Biology, 2010, 3, 583-585.	1.4	16
119	The Selective Macroautophagic Degradation of Aggregated Proteins Requires the PI3P-Binding Protein Alfy. Molecular Cell, 2010, 38, 265-279.	9.7	390
120	Ubiquitination of $\hat{I}\pm \hat{I}^21$ Integrin Controls Fibroblast Migration through Lysosomal Degradation of Fibronectin-Integrin Complexes. Developmental Cell, 2010, 19, 148-159.	7.0	216
121	Divide and ProsPer: The emerging role of PtdIns3P in cytokinesis. Trends in Cell Biology, 2010, 20, 642-649.	7.9	41
122	Disruption of Vps4 and JNK Function in Drosophila Causes Tumour Growth. PLoS ONE, 2009, 4, e4354.	2.5	50
123	Cell death during <i>Drosophila melanogaster</i> early oogenesis is mediated through autophagy. Autophagy, 2009, 5, 298-302.	9.1	124
124	Ubiquitylation of the gap junction protein connexin-43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. Journal of Cell Science, 2009, 122, 3883-3893.	2.0	86
125	Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in <i>Drosophila</i> by efficient isolation of ESCRT mutants. Journal of Cell Science, 2009, 122, 2413-2423.	2.0	136
126	ESCRT proteins in physiology and disease. Experimental Cell Research, 2009, 315, 1619-1626.	2.6	80

#	Article	IF	CITATIONS
127	Dual degradation mechanisms ensure disposal of NHE6 mutant protein associated with neurological disease. Experimental Cell Research, 2009, 315, 3014-3027.	2.6	45
128	The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009, 458, 445-452.	27.8	1,182
129	Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 2009, 10, 513-525.	37.0	2,771
130	Seeing is believing. Nature Reviews Molecular Cell Biology, 2009, 10, 582-582.	37.0	6
131	Multivesicular Endosome Biogenesis in the Absence of ESCRTs. Traffic, 2009, 10, 925-937.	2.7	532
132	ESCRTing Membrane Deformation. Cell, 2009, 136, 15-17.	28.9	6
133	Autophagy in tumour suppression and promotion. Molecular Oncology, 2009, 3, 366-375.	4.6	163
134	How do ESCRT proteins control autophagy?. Journal of Cell Science, 2009, 122, 2179-2183.	2.0	146
135	The role of ESCRT proteins in attenuation of cell signalling. Biochemical Society Transactions, 2009, 37, 137-142.	3.4	30
136	Cell ycleâ€dependent binding kinetics for the early endosomal tethering factor EEA1. EMBO Reports, 2008, 9, 171-178.	4.5	27
137	Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking. Experimental Cell Research, 2008, 314, 801-813.	2.6	105
138	Membranes and organelles. Current Opinion in Cell Biology, 2008, 20, 357-359.	5.4	4
139	SLC9A6 Mutations Cause X-Linked Mental Retardation, Microcephaly, Epilepsy, and Ataxia, a Phenotype Mimicking Angelman Syndrome. American Journal of Human Genetics, 2008, 82, 1003-1010.	6.2	209
140	The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy, 2008, 4, 500-506.	9.1	58
141	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
142	Self-eating from an ER-associated cup. Journal of Cell Biology, 2008, 182, 621-622.	5.2	29
143	An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. Journal of Cell Biology, 2008, 180, 1205-1218.	5.2	74
144	Ubc4/5 and c-Cbl Continue to Ubiquitinate EGF Receptor after Internalization to Facilitate Polyubiquitination and Degradation. Molecular Biology of the Cell, 2008, 19, 3454-3462.	2.1	94

#	Article	IF	CITATIONS
145	Ref(2)P, the <i>Drosophila melanogaster</i> homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. Journal of Cell Biology, 2008, 180, 1065-1071.	5.2	369
146	Regulation of Early Endosomal Entry by the <i>Drosophila</i> Tumor Suppressors Rabenosyn and Vps45. Molecular Biology of the Cell, 2008, 19, 4167-4176.	2.1	79
147	ESCRTing autophagic clearance of aggregating proteins. Autophagy, 2008, 4, 233-236.	9.1	34
148	RILP is required for the proper morphology and function of late endosomes. Journal of Cell Science, 2007, 120, 3729-3737.	2.0	101
149	Endocytosis of the dermatan sulfate proteoglycan decorin utilizes multiple pathways and is modulated by epidermal growth factor receptor signaling. Biochimie, 2007, 89, 637-657.	2.6	22
150	Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. Journal of Cell Biology, 2007, 179, 485-500.	5.2	559
151	Moonlighting at the pole. Nature, 2007, 445, 497-499.	27.8	36
152	Stimulating the cell's appetite for itself. Nature Chemical Biology, 2007, 3, 304-306.	8.0	0
153	Vps22/EAP30 in ESCRTâ€I Mediates Endosomal Sorting of Growth Factor and Chemokine Receptors Destined for Lysosomal Degradation. Traffic, 2007, 8, 1617-1629.	2.7	107
154	ESCRTs. Current Biology, 2007, 17, R42-R43.	3.9	2
155	ESCRTs and Fab1 Regulate Distinct Steps of Autophagy. Current Biology, 2007, 17, 1817-1825.	3.9	292
156	Regulation of membrane traffic by phosphoinositide 3-kinases. Journal of Cell Science, 2006, 119, 605-614.	2.0	382
157	A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Experimental Cell Research, 2006, 312, 2018-2027.	2.6	73
158	Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene, 2006, 371, 34-41.	2.2	61
159	Working out coupled monoubiquitination. Nature Cell Biology, 2006, 8, 1218-1219.	10.3	21
160	Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biology, 2006, 8, 163-169.	10.3	279
161	Analyzing phosphoinositides and their interacting proteins. Nature Methods, 2006, 3, 251-258.	19.0	108
162	Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Structural and Molecular Biology, 2006, 13, 272-277.	8.2	155

#	Article	IF	CITATIONS
163	Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Structural and Molecular Biology, 2006, 13, 1031-1032.	8.2	50
164	Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO Journal, 2006, 25, 683-692.	7.8	407
165	CISK attenuates degradation of the chemokine receptor CXCR4 via the ubiquitin ligase AIP4. EMBO Journal, 2006, 25, 3738-3749.	7.8	65
166	Both clathrin-positive and -negative coats are involved in endosomal sorting of the EGF receptor. Experimental Cell Research, 2006, 312, 3036-3048.	2.6	20
167	Endosomal and non-endosomal functions of ESCRT proteins. Trends in Cell Biology, 2006, 16, 317-326.	7.9	219
168	A new side to ubiquitin. Trends in Biochemical Sciences, 2006, 31, 541-544.	7.5	17
169	How a RING Finger Protein and a Steroid Hormone Control Autophagy?. Autophagy, 2006, 2, 321-322.	9.1	4
170	The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. Journal of Cell Science, 2006, 119, 3944-3957.	2.0	240
171	Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Controls Trafficking but Not Silencing of Endocytosed Receptors. Molecular Biology of the Cell, 2006, 17, 3989-4001.	2.1	112
172	Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. Journal of Cell Science, 2006, 119, 2414-2424.	2.0	130
173	The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor. Molecular Biology of the Cell, 2006, 17, 2513-2523.	2.1	159
174	Protein Sorting in Endosomes. , 2006, , 76-88.		1
175	Actin-based motility of endosomes is linked to the polar tip growth of root hairs. European Journal of Cell Biology, 2005, 84, 609-621.	3.6	170
176	The FYVE Finger: A Phosphoinositide Binding Domain. , 2005, , 128-133.		1
177	Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain. Journal of Biological Chemistry, 2005, 280, 19600-19606.	3.4	152
178	Alix regulates cortical actin and the spatial distribution of endosomes. Journal of Cell Science, 2005, 118, 2625-2635.	2.0	103
179	p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. Journal of Cell Biology, 2005, 171, 603-614.	5.2	2,854
180	Modulation of Receptor Recycling and Degradation by the Endosomal Kinesin KIF16B. Cell, 2005, 121, 437-450.	28.9	288

#	Article	IF	CITATIONS
181	The Rab5 effector Rabaptin-5 and its isoform Rabaptin-5delta differ in their ability to interact with the small GTPase Rab4. FEBS Journal, 2005, 272, 37-46.	4.7	2
182	The Growth-Regulatory Protein HCRP1/hVps37A Is a Subunit of Mammalian ESCRT-I and Mediates Receptor Down-Regulation. Molecular Biology of the Cell, 2004, 15, 4337-4346.	2.1	140
183	Misfolding diverts CFTR from recycling to degradation. Journal of Cell Biology, 2004, 164, 923-933.	5.2	311
184	Cbl-dependent Ubiquitination Is Required for Progression of EGF Receptors into Clathrin-coated Pits. Molecular Biology of the Cell, 2004, 15, 3591-3604.	2.1	145
185	Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of Cell Science, 2004, 117, 4239-4251.	2.0	271
186	Peroxisomal Targeting as a Tool for Assaying Protein-Protein Interactions in the Living Cell. Journal of Biological Chemistry, 2004, 279, 4794-4801.	3.4	15
187	Acquisition of Hrs, an Essential Component of Phagosomal Maturation, Is Impaired by Mycobacteria. Molecular and Cellular Biology, 2004, 24, 4593-4604.	2.3	90
188	The Rab5 effector Rabaptin-5 and its isoform Rabaptin-5δ differ in their ability to interact with the small GTPase Rab4. FEBS Journal, 2004, 272, 37-46.	4.7	12
189	The biogenesis of multivesicular endosomes. Nature Reviews Molecular Cell Biology, 2004, 5, 317-323.	37.0	630
190	Defective downregulation of receptor tyrosine kinases in cancer. EMBO Journal, 2004, 23, 2707-2712.	7.8	182
191	Programmed Autophagy in the Drosophila Fat Body Is Induced by Ecdysone through Regulation of the PI3K Pathway. Developmental Cell, 2004, 7, 179-192.	7.0	434
192	The Structure of an Endosomal Protein Sorter. Developmental Cell, 2004, 7, 457-458.	7.0	7
193	Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes. Histochemistry and Cell Biology, 2003, 120, 445-453.	1.7	94
194	Protein sorting into multivesicular endosomes. Current Opinion in Cell Biology, 2003, 15, 446-455.	5.4	456
195	The E3 Ubiquitin Ligase AIP4 Mediates Ubiquitination and Sorting of the G Protein-Coupled Receptor CXCR4. Developmental Cell, 2003, 5, 709-722.	7.0	366
196	STAM and Hrs Are Subunits of a Multivalent Ubiquitin-binding Complex on Early Endosomes. Journal of Biological Chemistry, 2003, 278, 12513-12521.	3.4	273
197	Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. Journal of Cell Biology, 2003, 162, 435-442.	5.2	420
198	Early Endosomal Regulation of Smad-dependent Signaling in Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 18046-18052.	3.4	132

#	Article	IF	CITATIONS
199	The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Letters, 2002, 513, 77-84.	2.8	181
200	Hrs and Endocytic Sorting of Ubiquitinated Membrane Proteins Cell Structure and Function, 2002, 27, 403-408.	1.1	99
201	Role of Rab5 in the Recruitment of hVps34/p150 to the Early Endosome. Traffic, 2002, 3, 416-427.	2.7	187
202	Phosphorylation of Hrs downstream of the epidermal growth factor receptor. FEBS Journal, 2002, 269, 3881-3887.	0.2	37
203	Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biology, 2002, 4, 394-398.	10.3	631
204	The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. Journal of Cell Science, 2002, 115, 899-911.	2.0	129
205	The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. Journal of Cell Science, 2002, 115, 899-911.	2.0	105
206	The Rab GTPase family. Genome Biology, 2001, 2, reviews3007.1.	9.6	583
207	CELL BIOLOGY: A Lipid Oils the Endocytosis Machine. Science, 2001, 291, 993-994.	12.6	24
208	Introduction. Seminars in Cell and Developmental Biology, 2001, 12, 135-137.	5.0	1
209	Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Seminars in Cell and Developmental Biology, 2001, 12, 193-199.	5.0	53
210	Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochemical Journal, 2001, 355, 249-258.	3.7	197
211	PX domains: attracted by phosphoinositides. Nature Cell Biology, 2001, 3, E179-E181.	10.3	69
212	The role of phosphoinositides in membrane transport. Current Opinion in Cell Biology, 2001, 13, 485-492.	5.4	445
213	Trafficking of Phosphatidylinositol 3-Phosphate from the trans-Golgi Network to the Lumen of the Central Vacuole in Plant Cells. Plant Cell, 2001, 13, 287-301.	6.6	249
214	Phosphoinositides and phagocytosis. Journal of Cell Biology, 2001, 155, 15-18.	5.2	93
215	Trafficking of Phosphatidylinositol 3-Phosphate from the trans-Golgi Network to the Lumen of the Central Vacuole in Plant Cells. Plant Cell, 2001, 13, 287.	6.6	9
216	Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochemical Journal, 2001, 355, 249.	3.7	140

#	Article	IF	CITATIONS
217	FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. Journal of Cell Science, 2001, 114, 2255-2263.	2.0	254
218	Membrane traffic: Cycling lipids. Current Biology, 2000, 10, R57-R59.	3.9	16
219	Endosomal Localization and Receptor Dynamics Determine Tyrosine Phosphorylation of Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate. Molecular and Cellular Biology, 2000, 20, 7685-7692.	2.3	114
220	Interaction of the EEA1 FYVE Finger with Phosphatidylinositol 3-Phosphate and Early Endosomes. Journal of Biological Chemistry, 2000, 275, 24595-24600.	3.4	134
221	The Rab5 Effector EEA1 Interacts Directly with Syntaxin-6. Journal of Biological Chemistry, 1999, 274, 28857-28860.	3.4	217
222	Direct interaction of EEA1 with Rab5b. FEBS Journal, 1999, 265, 361-366.	0.2	52
223	FYVE finger proteins as effectors of phosphatidylinositol 3-phosphate. Chemistry and Physics of Lipids, 1999, 98, 87-94.	3.2	28
224	Phosphoinositides in membrane traffic. Current Opinion in Cell Biology, 1999, 11, 460-465.	5.4	205
225	The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. Biochemical Journal, 1999, 338, 539-543.	3.7	109
226	The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. Biochemical Journal, 1999, 338, 539.	3.7	66
227	Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO Journal, 1998, 17, 1930-1940.	7.8	99
228	Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound rab4 and rab5. EMBO Journal, 1998, 17, 1941-1951.	7.8	214
229	Autoantibodies to a Novel Early Endosome Antigen 1. Clinical Immunology and Immunopathology, 1998, 86, 81-87.	2.0	28
230	FYVE fingers bind PtdIns(3)P. Nature, 1998, 394, 432-433.	27.8	537
231	EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature, 1998, 394, 494-498.	27.8	1,036
232	Syntaxin-16, a putative Golgi t-SNARE. European Journal of Cell Biology, 1998, 75, 223-231.	3.6	106
233	Rab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells. Journal of Cell Biology, 1998, 140, 1039-1053.	5.2	132
234	A Novel Rab5 GDP/GTP Exchange Factor Complexed to Rabaptin-5 Links Nucleotide Exchange to Effector Recruitment and Function. Cell, 1997, 90, 1149-1159.	28.9	552

#	Article	IF	CITATIONS
235	Endosomal Localization of the Autoantigen EEA1 Is Mediated by a Zinc-binding FYVE Finger. Journal of Biological Chemistry, 1996, 271, 24048-24054.	3.4	416
236	[19] Expression of Rab GTPases using recombinant vaccinia viruses. Methods in Enzymology, 1995, 257, 155-164.	1.0	39
237	Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell, 1995, 83, 423-432.	28.9	451
238	EEA1, an Early Endosome-Associated Protein Journal of Biological Chemistry, 1995, 270, 13503-13511.	3.4	647
239	The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron, 1994, 13, 11-22.	8.1	140
240	Rab GTPases in vesicular transport. Current Opinion in Cell Biology, 1993, 5, 613-620.	5.4	383
241	Protein toxins with intracellular targets. Microbial Pathogenesis, 1990, 8, 163-168.	2.9	25
242	Diphtheria toxin entry: protein translocation in the reverse direction. Trends in Biochemical Sciences, 1988, 13, 348-351.	7.5	61