List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys. International Journal of Hydrogen Energy, 2021, 46, 2351-2361.	3.8	69
2	Effects of the Chromium Content in (TiVNb)100â^'xCrx Body-Centered Cubic High Entropy Alloys Designed for Hydrogen Storage Applications. Energies, 2021, 14, 3068.	1.6	24
3	Polyetherimide-LaNi5 composite films for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46, 23767-23778.	3.8	12
4	A text mining-based approach for the evaluation of patenting trends on nanomaterials. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	3
5	Hydrogen storage properties of filings of the ZK60 alloy modified with 2.5Âwt% mischmetal. International Journal of Hydrogen Energy, 2020, 45, 5375-5383.	3.8	7
6	A scientometric review of research in hydrogen storage materials. International Journal of Hydrogen Energy, 2020, 45, 5356-5366.	3.8	72
7	Development of polymer nanocomposites with sodium alanate for hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 5337-5346.	3.8	21
8	Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen. International Journal of Hydrogen Energy, 2020, 45, 2084-2093.	3.8	19
9	Synthesis of Nanostructured TiFe Hydrogen Storage Material by Mechanical Alloying via Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 2000011.	1.6	13
10	Fast hydrogen absorption/desorption kinetics in reactive milled Mg-8 mol% Fe nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 12408-12418.	3.8	21
11	Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: Improved air stability and processability. International Journal of Hydrogen Energy, 2020, 45, 14017-14027.	3.8	22
12	Hydrogen storage properties of 2ÂMg–Fe mixtures processed by hot extrusion: Effect of ram speeds. International Journal of Hydrogen Energy, 2019, 44, 20203-20212.	3.8	2
13	Effects of graphite addition and air exposure on ball-milled Mg–Al alloys for hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 23257-23266.	3.8	12
14	Hydrogen desorption/absorption properties of the extensively cold rolled β Ti–40Nb alloy. International Journal of Hydrogen Energy, 2019, 44, 20133-20144.	3.8	7
15	Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. International Journal of Hydrogen Energy, 2018, 43, 2913-2918.	3.8	66
16	Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. International Journal of Hydrogen Energy, 2018, 43, 1702-1708.	3.8	111
17	Synthesis of β-Ti-Nb alloys from elemental powders by high-energy ball milling and their hydrogenation features. International Journal of Hydrogen Energy, 2018, 43, 18382-18391.	3.8	8
18	Effects of friction stir processing on hydrogen storage of ZK60 alloy. International Journal of Hydrogen Energy, 2018, 43, 11085-11091.	3.8	18

#	Article	IF	CITATIONS
19	Room temperature hydrogen absorption by Mg andÂMg TiFe nanocomposites processed by high-energy ball milling. International Journal of Hydrogen Energy, 2018, 43, 12251-12259.	3.8	32
20	Hydrogen storage in MgH2LaNi5 composites prepared by cold rolling under inert atmosphere. International Journal of Hydrogen Energy, 2018, 43, 13348-13355.	3.8	25
21	Assessing technological developments in amorphous/glassy metallic alloys using patent indicators. Journal of Alloys and Compounds, 2017, 716, 330-335.	2.8	15
22	Structural characterization and hydrogen storage properties of MgH 2 –Mg 2 CoH 5 nanocomposites. International Journal of Hydrogen Energy, 2017, 42, 14593-14601.	3.8	17
23	Iron and niobium based additives in magnesium hydride: Microstructure and hydrogen storage properties. International Journal of Hydrogen Energy, 2017, 42, 6810-6819.	3.8	57
24	Processing of MgH2 by extensive cold rolling under protective atmosphere. International Journal of Hydrogen Energy, 2017, 42, 2201-2208.	3.8	16
25	Low temperature rolling of AZ91 alloy for hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 29394-29405.	3.8	19
26	Thermal Spraying Processes and Amorphous Alloys: Macro-Indicators of Patent Activity. Materials Research, 2017, 20, 89-95.	0.6	2
27	Severe Plastic Deformation and Additive Distribution in Mg-Fe to Improve Hydrogen Storage Properties. Materials Research, 2017, 20, 61-70.	0.6	8
28	Mg-based Nanocomposites for Hydrogen Storage Containing Ti-Cr-V Alloys as Additives. Materials Research, 2016, 19, 80-85.	0.6	19
29	Materials Selection for Sustainable Executive Aircraft Interiors. Materials Research, 2016, 19, 339-352.	0.6	21
30	Technological forecasting of hydrogen storage materials using patent indicators. International Journal of Hydrogen Energy, 2016, 41, 18301-18310.	3.8	47
31	Severely deformed ZK60Â+Â2.5% Mm alloy for hydrogen storage produced by two different processing routes. International Journal of Hydrogen Energy, 2016, 41, 11284-11292.	3.8	25
32	Hydrogen storage in heavily deformed ZK60 alloy modified with 2.5Âwt.% Mm addition. International Journal of Hydrogen Energy, 2016, 41, 4177-4184.	3.8	23
33	Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. International Journal of Hydrogen Energy, 2015, 40, 16971-16976.	3.8	44
34	Controlled mechanochemical synthesis and hydrogen desorption mechanisms of nanostructured Mg2CoH5. International Journal of Hydrogen Energy, 2015, 40, 1504-1515.	3.8	13
35	Exploring several different routes to produce Mg- based nanomaterials for Hydrogen storage. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012115.	0.3	5
36	MgH2-based nanocomposites prepared by short-time high energy ball milling followed byÂcold rolling: A new processing route. International Journal of Hydrogen Energy, 2014, 39, 4404-4413.	3.8	23

#	Article	IF	CITATIONS
37	Cold rolling under inert atmosphere: A powerful tool for Mg activation. International Journal of Hydrogen Energy, 2014, 39, 4959-4965.	3.8	30
38	Patents in nanotechnology: an analysis using macro-indicators and forecasting curves. Scientometrics, 2014, 101, 1097-1112.	1.6	33
39	Hydrogen storage properties of MgH2 processed by cold forging. Journal of Alloys and Compounds, 2014, 615, S719-S724.	2.8	18
40	Cold rolling of MgH2 powders containing different additives. International Journal of Hydrogen Energy, 2013, 38, 16193-16198.	3.8	37
41	Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology. Journal of Alloys and Compounds, 2013, 562, 194-204.	2.8	78
42	H-sorption properties and structural evolution of Mg processed by severe plastic deformation. Journal of Alloys and Compounds, 2013, 580, S187-S191.	2.8	27
43	Nanostructured MgH2 obtained by cold rolling combined with short-time high-energy ball milling. Materials Research, 2013, 16, 158-163.	0.6	14
44	Materials Research: Ibero-american Journal of Materials. Materials Research, 2013, 16, 563-564.	0.6	0
45	Mechanochemistry and H-sorption properties of Mg2FeH6-based nanocomposites. International Journal of Materials Research, 2012, 103, 1147-1154.	0.1	12
46	Synthesis and hydrogen sorption properties of Mg2FeH6–MgH2 nanocomposite prepared by reactive milling. Journal of Alloys and Compounds, 2012, 536, S250-S254.	2.8	26
47	Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling. Materials Research, 2012, 15, 813-817.	0.6	18
48	Nanostructured MgH2 prepared by cold rolling and cold forging. Journal of Alloys and Compounds, 2011, 509, S444-S448.	2.8	54
49	High-Yield Direct Synthesis of Mg ₂ FeH ₆ from the Elements by Reactive Milling. Solid State Phenomena, 2011, 170, 259-262.	0.3	14
50	Nanoscale Grain Refinement and Hâ€6orption Properties of MgH ₂ Processed by Highâ€Pressure Torsion and Other Mechanical Routes. Advanced Engineering Materials, 2010, 12, 786-792.	1.6	82
51	Hydrogen Sorption Properties of the Complex Hydride Mg ₂ FeH ₆ Consolidated by HPT. Materials Science Forum, 2010, 667-669, 1053-1058.	0.3	3
52	Hydrogen Activation Behavior of Commercial Magnesium Processed by Different Severe Plastic Deformation Routes. Materials Science Forum, 2010, 667-669, 1047-1051.	0.3	15
53	Mg alloy for hydrogen storage processed by SPD. International Journal of Materials Research, 2009, 100, 1739-1746.	0.1	62
54	Severe plastic deformation of Mg-Fe powders to produce bulk hydrides. Journal of Physics: Conference Series, 2009, 144, 012015.	0.3	23

#	Article	IF	CITATIONS
55	Synthesis of MgH ₂ and Mg ₂ FeH ₆ by Reactive Milling of Mg-Based Mixtures Containing Fluorine and Iron. Materials Science Forum, 2008, 570, 39-44.	0.3	15
56	Microstructures and mechanical properties of bulk AlFeNd(Cu,Si) alloys obtained through centrifugal force casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 161-169.	2.6	9
57	Al ₂ O ₃ -Ni ₃ Al Composites Obtained by Reactive Milling and Reactive Sintering. Materials Science Forum, 2003, 416-418, 493-498.	0.3	1
58	Consolidation of Partially Amorphous Al-Fe-Zr Alloys. Materials Science Forum, 2002, 386-388, 33-38.	0.3	14
59	Consolidation of Partially Amorphous Al-Fe-Zr Alloys. Journal of Metastable and Nanocrystalline Materials, 2002, 13, 33-38.	0.1	0
60	Rapidly Solidified Bulk Al Alloys from a New Centrifugal Force Casting. Materials Science Forum, 2002, 403, 21-26.	0.3	4
61	Rapidly Solidified Bulk Al Alloys from a New Centrifugal Force Casting. Journal of Metastable and Nanocrystalline Materials, 2002, 14, 21-26.	0.1	1
62	Synthesis of Al ₂ O ₃ -Nb Composite by Reactive Milling. Key Engineering Materials, 2001, 189-191, 38-43.	0.4	1
63	Reactive Milling of Magnesium under Hydrogen Using Transition Metals and their Fluorides as Additives. Solid State Phenomena, 0, 194, 232-236.	0.3	6
64	Synthesis by High-Energy Ball Milling of MgH ₂ -TiFe Composites for Hydrogen Storage. Materials Science Forum, 0, 899, 13-18.	0.3	6