FabiÃ;n SuÃ;rez-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3339039/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons. Journal of the American Chemical Society, 2009, 131, 5026-5027.	6.6	564
2	Synthetic carbons activated with phosphoric acid. Carbon, 2002, 40, 1493-1505.	5.4	483
3	Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon, 2007, 45, 293-303.	5.4	420
4	Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 2005, 43, 2857-2868.	5.4	316
5	Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis, 2003, 70, 779-784.	2.6	155
6	Influence of Porous Texture and Surface Chemistry on the CO ₂ Adsorption Capacity of Porous Carbons: Acidic and Basic Site Interactions. ACS Applied Materials & Interfaces, 2014, 6, 21237-21247.	4.0	147
7	Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon, 2003, 41, 1181-1191.	5.4	141
8	Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon, 2004, 42, 1419-1426.	5.4	140
9	MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen Energy, 2012, 37, 2370-2381.	3.8	119
10	Pyrolysis of apple pulp: chemical activation with phosphoric acid. Journal of Analytical and Applied Pyrolysis, 2002, 63, 283-301.	2.6	117
11	Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous and Mesoporous Materials, 2008, 112, 235-242.	2.2	117
12	Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon, 2007, 45, 1941-1950.	5.4	115
13	Activated carbon monoliths for gas storage at room temperature. Energy and Environmental Science, 2012, 5, 9833.	15.6	109
14	Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. Journal of Power Sources, 2006, 153, 419-423.	4.0	98
15	Synthetic carbons activated with phosphoric acid. Carbon, 2002, 40, 1507-1519.	5.4	89
16	Capacitive Behaviours of Phosphorus-Rich Carbons Derived from Lignocelluloses. Electrochimica Acta, 2014, 137, 219-227.	2.6	85
17	Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. Carbon, 2006, 44, 2452-2462.	5.4	83
18	Activated Carbon Materials of Uniform Porosity from Polyaramid Fibers. Chemistry of Materials, 2005, 17, 5893-5908.	3.2	82

#	Article	IF	CITATIONS
19	Tuning of texture and surface chemistry of carbon xerogels. Journal of Colloid and Interface Science, 2008, 324, 150-155.	5.0	81
20	Pyrolysis of apple pulp: effect of operation conditions and chemical additives. Journal of Analytical and Applied Pyrolysis, 2002, 62, 93-109.	2.6	69
21	Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. Carbon, 2015, 81, 137-147.	5.4	68
22	Inorganic matter characterization in vegetable biomass feedstocks1. Fuel, 2002, 81, 1161-1169.	3.4	67
23	A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon, 2010, 48, 2906-2909.	5.4	67
24	Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA. Journal of Colloid and Interface Science, 2011, 361, 307-315.	5.0	58
25	Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. Carbon, 2014, 70, 119-129.	5.4	55
26	Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. Carbon, 2001, 39, 1111-1115.	5.4	52
27	Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method. Carbon, 2013, 62, 193-203.	5.4	51
28	A comparative study of the thermal decomposition of apple pulp in the absence and presence of phosphoric acid. Polymer Degradation and Stability, 2002, 75, 375-383.	2.7	50
29	Sorbent design for CO2 capture under different flue gas conditions. Carbon, 2014, 72, 125-134.	5.4	49
30	Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO ₂ Capture. Macromolecules, 2017, 50, 2814-2824.	2.2	49
31	Synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas. Microporous and Mesoporous Materials, 2012, 151, 390-396.	2.2	44
32	N2Physisorption on Carbon Nanotubes:Â Computer Simulation and Experimental Results. Journal of Physical Chemistry B, 2003, 107, 8905-8916.	1.2	41
33	Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. International Journal of Hydrogen Energy, 2009, 34, 9141-9150.	3.8	41
34	Microporous Polymer Networks for Carbon Capture Applications. ACS Applied Materials & Interfaces, 2018, 10, 26195-26205.	4.0	41
35	Characterization of synthetic carbons activated with phosphoric acid. Applied Surface Science, 2002, 200, 196-202.	3.1	40
36	Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33, 3091-3095.	3.8	35

FabiÃin SuÃirez-GarcÃa

#	Article	IF	CITATIONS
37	Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temperature and time effects. Microporous and Mesoporous Materials, 2004, 75, 73-80.	2.2	34
38	Effect of Phosphoric Acid on Chemical Transformations during Nomex Pyrolysis. Chemistry of Materials, 2004, 16, 2639-2647.	3.2	34
39	Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. Journal of Alloys and Compounds, 2014, 583, 60-69.	2.8	32
40	Analysis of the microporous texture of a glassy carbon by adsorption measurements and Monte Carlo simulation. Evolution with chemical and physical activation. Carbon, 2006, 44, 638-645.	5.4	30
41	Preparation and porous texture characteristics of fibrous ultrahigh surface area carbons. Journal of Materials Chemistry, 2002, 12, 3213-3219.	6.7	27
42	The importance of electrode characterization to assess the supercapacitor performance of ordered mesoporous carbons. Microporous and Mesoporous Materials, 2016, 235, 1-8.	2.2	26
43	Synthesis and characterization of graphene–mesoporous silica nanoparticle hybrids. Microporous and Mesoporous Materials, 2012, 160, 18-24.	2.2	25
44	Avoiding structure degradation during activation of ordered mesoporous carbons. Carbon, 2012, 50, 3826-3835.	5.4	23
45	Effects of the mesostructural order on the electrochemical performance of hierarchical micro–mesoporous carbons. Journal of Materials Chemistry A, 2014, 2, 12023-12030.	5.2	22
46	New Materials for Gas Separation Applications: Mixed Matrix Membranes Made from Linear Polyimides and Porous Polymer Networks Having Lactam Groups. Industrial & Engineering Chemistry Research, 2019, 58, 9585-9595.	1.8	22
47	Energy Storage on Ultrahigh Surface Area Activated Carbon Fibers Derived from PMIA. ChemSusChem, 2013, 6, 1406-1413.	3.6	19
48	Adsorbent density impact on gas storage capacities. Microporous and Mesoporous Materials, 2013, 173, 47-52.	2.2	19
49	Evolution of the complex surface chemistry in mesoporous carbons obtained from polyaramide precursors. Applied Surface Science, 2014, 299, 19-28.	3.1	19
50	CO2 capture by novel hierarchical activated ordered micro-mesoporous carbons derived from low value coal tar products. Microporous and Mesoporous Materials, 2021, 318, 110986.	2.2	19
51	Activated Carbon Fibers with a High Heteroatom Content by Chemical Activation of PBO with Phosphoric Acid. Langmuir, 2012, 28, 5850-5860.	1.6	18
52	Beneficial effects of phosphoric acid as an additive in the preparation of activated carbon fibers from Nomex aramid fibers by physical activation. Fuel Processing Technology, 2002, 77-78, 237-244.	3.7	15
53	Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol. Fuel Processing Technology, 2002, 77-78, 401-407.	3.7	13
54	Porous Texture of Carbons. Advanced Materials and Technologies, 2009, , 115-162.	0.4	13

FabiÃin SuÃirez-GarcÃa

#	Article	IF	CITATIONS
55	One-pot endo/exotemplating of hierarchical micro-mesoporous carbons. Carbon, 2013, 54, 365-377.	5.4	12
56	APTES-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO2 Gas Molecules. Nanomaterials, 2021, 11, 2893.	1.9	11
57	CO2 adsorption capacities of amine-functionalized microporous silica nanoparticles. Reactive and Functional Polymers, 2022, 170, 105100.	2.0	11
58	A Microscopic View of Physical and Chemical Activation in the Synthesis of Porous Carbons. Langmuir, 2006, 22, 9730-9739.	1.6	10
59	Advances in Hydrogen Storage in Carbon Materials. , 2013, , 269-291.		8
60	Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. Microporous and Mesoporous Materials, 2014, 190, 156-164.	2.2	8
61	Ionic Polyureas—A Novel Subclass of Poly(Ionic Liquid)s for CO2 Capture. Membranes, 2020, 10, 240.	1.4	7
62	Porosity Development in Carbon Nanofibers by Physical and Chemical Activation. Journal of Nano Research, 0, 17, 211-227.	0.8	6
63	Thermogravimetric studies on the activation of nanometric carbon fibers. Journal of Thermal Analysis and Calorimetry, 2005, 79, 525-528.	2.0	5
64	Impact of the Carbonization Atmosphere on the Properties of Phosphoric Acid-Activated Carbons from Fruit Stones. Adsorption Science and Technology, 2008, 26, 843-851.	1.5	4
65	Applications for CO ₂ â€Activated Carbon Monoliths: I. Gas Storage. International Journal of Applied Ceramic Technology, 2015, 12, E121.	1.1	4
66	Synthetic Carbons Derived from a Styrene—Divinylbenzene Copolymer Using Phosphoric Acid Activation. Adsorption Science and Technology, 2005, 23, 19-26.	1.5	2
67	Adsorption on Fullereness. , 2008, , 329-367.		1

68 Gas-Adsorbing Nanoporous Carbons. , 2016, , 465-486.

0