
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3338853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From the Genome to the Proteome: Uncovering Peptides in the Apis Brain. Science, 2006, 314, 647-649.	6.0	309
2	Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples. International Journal of Molecular Sciences, 2015, 16, 3537-3563.	1.8	225
3	Isolation and solubilization of proteins after TRI <scp>zol</scp> ® extraction of RNA and DNA from patient material following prolonged storage. BioTechniques, 2007, 42, 467-472.	0.8	210
4	Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrometry Reviews, 2006, 25, 77-98.	2.8	164
5	Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up Proteomic Studies. Journal of Proteome Research, 2018, 17, 2480-2490.	1.8	132
6	Evaluation of Therapeutics in Three-Dimensional Cell Culture Systems by MALDI Imaging Mass Spectrometry. Analytical Chemistry, 2013, 85, 6295-6302.	3.2	111
7	Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas. Cancer Research, 2007, 67, 41-56.	0.4	108
8	Imaging Mass Spectrometry of Three-Dimensional Cell Culture Systems. Analytical Chemistry, 2011, 83, 8794-8801.	3.2	91
9	Imaging mass spectrometry: From tissue sections to cell cultures. Advanced Drug Delivery Reviews, 2013, 65, 1039-1055.	6.6	91
10	Comparing Multistep Immobilized Metal Affinity Chromatography and Multistep TiO ₂ Methods for Phosphopeptide Enrichment. Analytical Chemistry, 2015, 87, 8837-8844.	3.2	76
11	Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes and Cancer, 2009, 48, 1002-1017.	1.5	75
12	Mass spectrometry for the discovery of biomarkers of sepsis. Molecular BioSystems, 2017, 13, 648-664.	2.9	72
13	Characterization of Aplysia Enticin and Temptin, Two Novel Water-borne Protein Pheromones That Act in Concert with Attractin to Stimulate Mate Attraction. Journal of Biological Chemistry, 2004, 279, 25614-25622.	1.6	71
14	Chromosomal Breakpoints in Primary Colon Cancer Cluster at Sites of Structural Variants in the Genome. Cancer Research, 2008, 68, 1284-1295.	0.4	71
15	MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids. Journal of the American Society for Mass Spectrometry, 2018, 29, 516-526.	1.2	71
16	Genetic Amplification of the NOTCH Modulator LNX2 Upregulates the WNT/β-Catenin Pathway in Colorectal Cancer. Cancer Research, 2013, 73, 2003-2013.	0.4	68
17	Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics, 2016, 16, 1814-1821.	1.3	67
18	Analyzing Liposomal Drug Delivery Systems in Three-Dimensional Cell Culture Models Using MALDI Imaging Mass Spectrometry. Analytical Chemistry, 2017, 89, 8453-8458.	3.2	64

#	Article	IF	CITATIONS
19	Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst, The, 2014, 139, 4578.	1.7	61
20	Bridging Neuropeptidomics and Genomics with Bioinformatics:Â Prediction of Mammalian Neuropeptide Prohormone Processing. Journal of Proteome Research, 2006, 5, 1162-1167.	1.8	60
21	Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures. Analytical Chemistry, 2015, 87, 9508-9519.	3.2	60
22	Rightâ€side and leftâ€side colon cancer follow different pathways to relapse. Molecular Carcinogenesis, 2012, 51, 411-421.	1.3	54
23	Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models. Journal of Proteome Research, 2016, 15, 4265-4276.	1.8	52
24	Considerations for MALDI-Based Quantitative Mass Spectrometry Imaging Studies. Journal of Proteome Research, 2020, 19, 3620-3630.	1.8	52
25	Over 2300 Phosphorylated Peptide Identifications with Single-Shot Capillary Zone Electrophoresis-Tandem Mass Spectrometry in a 100 min Separation. Analytical Chemistry, 2015, 87, 9532-9537.	3.2	47
26	Chemical Imaging of Platinum-Based Drugs and their Metabolites. Scientific Reports, 2016, 6, 38507.	1.6	46
27	Effects of the miR-143/-145 MicroRNA Cluster on the Colon Cancer Proteome and Transcriptome. Journal of Proteome Research, 2012, 11, 4744-4754.	1.8	45
28	Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells. Molecular Cancer, 2012, 11, 1.	7.9	42
29	Combination of Multistep IMAC Enrichment with High-pH Reverse Phase Separation for In-Depth Phosphoproteomic Profiling. Journal of Proteome Research, 2013, 12, 4176-4186.	1.8	42
30	A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets. International Journal of Cancer, 2011, 128, 1069-1079.	2.3	41
31	Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes. Analytical Methods, 2013, 5, 4615.	1.3	41
32	MALDI-MSI of Immunotherapy: Mapping the EGFR-Targeting Antibody Cetuximab in 3D Colon-Cancer Cell Cultures. Analytical Chemistry, 2018, 90, 14156-14164.	3.2	40
33	From Precursor to Final Peptides:Â A Statistical Sequence-Based Approach to Predicting Prohormone Processing. Journal of Proteome Research, 2003, 2, 650-656.	1.8	39
34	Peer Reviewed: The Chemistry of Thought: Neurotransmitters in the Brain. Analytical Chemistry, 2004, 76, 120 A-128 A.	3.2	37
35	iTRAQ Quantitative Proteomic Profiling and MALDI–MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. Analytical Chemistry, 2018, 90, 1423-1430.	3.2	34
36	Sample Preparation Strategies for Mass Spectrometry Imaging of 3D Cell Culture Models. Journal of Visualized Experiments, 2014, , .	0.2	33

#	Article	IF	CITATIONS
37	Nutrient restriction of glucose or serum results in similar proteomic expression changes in 3D colon cancer cell cultures. Nutrition Research, 2016, 36, 1068-1080.	1.3	31
38	Assessing chemotherapeutic effectiveness using a paper-based tumor model. Analyst, The, 2017, 142, 2819-2827.	1.7	29
39	Glucose Restriction Combined with Autophagy Inhibition and Chemotherapy in HCT 116 Spheroids Decreases Cell Clonogenicity and Viability Regulated by Tumor Suppressor Genes. Journal of Proteome Research, 2017, 16, 3009-3018.	1.8	29
40	Comparative labelâ€free <scp>LC</scp> â€ <scp>MS</scp> / <scp>MS</scp> analysis of colorectal adenocarcinoma and metastatic cells treated with 5â€fluorouracil. Proteomics, 2012, 12, 1928-1937.	1.3	28
41	Multicellular Tumor Spheroids Combined with Mass Spectrometric Histone Analysis To Evaluate Epigenetic Drugs. Analytical Chemistry, 2017, 89, 2773-2781.	3.2	27
42	Capillary Zone Electrophoresis–Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line. Analytical Chemistry, 2019, 91, 2201-2208.	3.2	27
43	Proteomic and Functional Investigation of the Colon Cancer Relapse-Associated Genes NOX4 and ITGA3. Journal of Proteome Research, 2014, 13, 4910-4918.	1.8	26
44	Quantitative Determination of Irinotecan and the Metabolite SN-38 by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry in Different Regions of Multicellular Tumor Spheroids. Journal of the American Society for Mass Spectrometry, 2015, 26, 577-586.	1.2	26
45	Single Cell Metabolic Profiling of Tumor Mimics. Analytical Chemistry, 2013, 85, 8910-8918.	3.2	22
46	ColoType: a forty gene signature for consensus molecular subtyping of colorectal cancer tumors using whole-genome assay or targeted RNA-sequencing. Scientific Reports, 2020, 10, 12123.	1.6	22
47	Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. Journal of Biological Chemistry, 2017, 292, 18775-18789.	1.6	20
48	Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells. Neoplasia, 2019, 21, 721-729.	2.3	19
49	Developing a Drug Screening Platform: MALDI-Mass Spectrometry Imaging of Paper-Based Cultures. Analytical Chemistry, 2019, 91, 15370-15376.	3.2	19
50	Chemometric analysis of MALDI mass spectrometric images of three-dimensional cell culture systems. Analytical Methods, 2015, 7, 7208-7219.	1.3	18
51	Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620. Analytical and Bioanalytical Chemistry, 2017, 409, 1749-1763.	1.9	18
52	Cyclic Peptidyl Inhibitors against CAL/CFTR Interaction for Treatment of Cystic Fibrosis. Journal of Medicinal Chemistry, 2020, 63, 15773-15784.	2.9	18
53	Discovering new neuropeptides using single-cell mass spectrometry. TrAC - Trends in Analytical Chemistry, 2003, 22, 515-521.	5.8	17
54	Bottom-up proteomic analysis of single HCT 116 colon carcinoma multicellular spheroids. Rapid Communications in Mass Spectrometry, 2015, 29, 654-658.	0.7	17

#	Article	IF	CITATIONS
55	Proteomics of Colorectal Cancer: Tumors, Organoids, and Cell Cultures—A Minireview. Frontiers in Molecular Biosciences, 2020, 7, 604492.	1.6	17
56	MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. Journal of Biological Chemistry, 2021, 297, 101139.	1.6	17
57	Comparative LC-MS/MS analysis of optimal cutting temperature (OCT) compound removal for the study of mammalian proteomes. Analyst, The, 2013, 138, 6380.	1.7	16
58	Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis. Molecular Omics, 2022, 18, 579-590.	1.4	13
59	A novel prohormone processing site in Aplysia californica: the Leu-Leu rule. Journal of Neurochemistry, 2002, 82, 1398-1405.	2.1	12
60	Chemical Analysis of Morphological Changes in Lysophosphatidic Acid-Treated Ovarian Cancer Cells. Scientific Reports, 2017, 7, 15295.	1.6	12
61	Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells. Carcinogenesis, 2013, 34, 1929-1939.	1.3	11
62	Evaluation of the mirn23a Cluster through an iTRAQ-based Quantitative Proteomic Approach. Journal of Proteome Research, 2016, 15, 1497-1505.	1.8	11
63	Quantitative evaluation of liposomal doxorubicin and its metabolites in spheroids. Analytical and Bioanalytical Chemistry, 2019, 411, 7087-7094.	1.9	11
64	In situ metabolite and lipid analysis of GluN2Dâ~'/â~' and wild-type mice after ischemic stroke using MALDI MSI. Analytical and Bioanalytical Chemistry, 2020, 412, 6275-6285.	1.9	11
65	A Peptidyl Inhibitor that Blocks Calcineurin–NFAT Interaction and Prevents Acute Lung Injury. Journal of Medicinal Chemistry, 2020, 63, 12853-12872.	2.9	9
66	How to Apply Supervised Machine Learning Tools to MS Imaging Files: Case Study with Cancer Spheroids Undergoing Treatment with the Monoclonal Antibody Cetuximab. Journal of the American Society for Mass Spectrometry, 2020, 31, 1350-1357.	1.2	9
67	Spatial Stable Isotopic Labeling by Amino Acids in Cell Culture: Pulse-Chase Labeling of Three-Dimensional Multicellular Spheroids for Global Proteome Analysis. Analytical Chemistry, 2021, 93, 15990-15999.	3.2	9
68	Magnetic bead-based peptide extraction methodology for tissue imaging. Analyst, The, 2018, 143, 133-140.	1.7	7
69	Calcitriol Supplementation Causes Decreases in Tumorigenic Proteins and Different Proteomic and Metabolomic Signatures in Right versus Left-Sided Colon Cancer. Metabolites, 2018, 8, 5.	1.3	7
70	Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Analytical and Bioanalytical Chemistry, 2018, 410, 6371-6386.	1.9	6
71	Coâ€culturing multicellular tumor models: Modeling the tumor microenvironment and analysis techniques. Proteomics, 2021, 21, 2000103.	1.3	6
72	Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Analytical and Bioanalytical Chemistry, 2018, 410, 1583-1594.	1.9	5

#	Article	IF	CITATIONS
73	Combined Short-Term Glucose Starvation and Chemotherapy in 3D Colorectal Cancer Cell Culture Decreases 14-3-3 Family Protein Expression and Phenotypic Response to Therapy. Journal of the American Society for Mass Spectrometry, 2018, 29, 2012-2022.	1.2	4
74	Selective, Bead-Based Global Peptide Capture Using a Bifunctional Cross-Linker. Analytical Chemistry, 2013, 85, 10675-10679.	3.2	3
75	Electroblotting through a tryptic membrane for LC-MS/MS analysis of proteins separated in electrophoretic gels. Analyst, The, 2020, 145, 7724-7735.	1.7	3
76	Electroblotting through Enzymatic Membranes to Enhance Molecular Tissue Imaging. Journal of the American Society for Mass Spectrometry, 2021, 32, 1689-1699.	1.2	3
77	Mass spectrometry-based phosphoproteomics in cancer research. Frontiers in Biology, 2012, 7, 566-586.	0.7	1
78	Electronic Cigarettes and the Lung Proteome. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1350-1351.	2.5	1
79	Mass spectrometric investigations of caloric restriction mimetics. Proteomics, 2021, 21, e2000121.	1.3	1
80	Virtual Issue Highlighting Selected Women Analytical Chemists. Analytical Chemistry, 2018, 90, 1433-1433.	3.2	0