
Yinzhou Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3338804/publications.pdf Version: 2024-02-01

Υίνζηου Υλν

#	Article	IF	CITATIONS
1	Cascaded microsphere-coupled surface-enhanced Raman spectroscopy (CMS-SERS) for ultrasensitive trace-detection. Nanophotonics, 2022, 11, 559-570.	6.0	9
2	In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785Ânm irradiation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120803.	3.9	10
3	Efficient defect control of zinc vacancy in undoped ZnO microtubes for optoelectronic applications. Journal of Applied Physics, 2022, 131, .	2.5	5
4	Flexible microsphere oupled surfaceâ€enhanced Raman spectroscopy (McSERS) by dielectric microsphere cavity array with random plasmonic nanoparticles. Journal of Raman Spectroscopy, 2022, 53, 1238-1248.	2.5	5
5	Microsphere Photonic Superlens for a Highly Emissive Flexible Upconversion-Nanoparticle-Embedded Film. ACS Applied Materials & Interfaces, 2022, , .	8.0	3
6	Current-induced thermal tunneling electroluminescence <i>via</i> multiple donor–acceptor-pair recombination. Journal of Materials Chemistry C, 2021, 9, 1174-1182.	5.5	5
7	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure. Advanced Optical Materials, 2021, 9, 2001932.	7.3	6
8	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure (Advanced Optical Materials 6/2021). Advanced Optical Materials, 2021, 9, 2170023.	7.3	0
9	Free-standing In2O3(ZnO)m superlattice microplates grown by optical vapor supersaturated precipitation. Journal of Materials Science, 2021, 56, 13723-13735.	3.7	2
10	Thermal-Assisted UV-Photon Irradiation to Improve Crystallization and Luminescence Efficiency of ZnO. IEEE Transactions on Electron Devices, 2021, 68, 3283-3289.	3.0	6
11	High-Performance Flexible Transparent Electrodes Fabricated via Laser Nano-Welding of Silver Nanowires. Crystals, 2021, 11, 996.	2.2	2
12	Wide-bandgap semiconductor microtubular homojunction photodiode for high-performance UV detection. Journal of Alloys and Compounds, 2021, 887, 161429.	5.5	11
13	Tubular acceptor-rich ZnO hierarchical heterostructure as an efficient photocatalyst for organic degradation. Applied Surface Science, 2020, 506, 145008.	6.1	5
14	Current-Induced Thermal Tunneling Electroluminescence in a Single Highly Compensated Semiconductor Microrod. IScience, 2020, 23, 101210.	4.1	6
15	Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications. RSC Advances, 2020, 10, 13379-13385.	3.6	2
16	Over 1000â€Fold Enhancement of the Unidirectional Photoluminescence from a Microsphereâ€Cavityâ€Arrayâ€Capped QD/PDMS Composite Film for Flexible Lighting and Displays. Advanced Optical Materials, 2019, 7, 1901228.	7.3	14
17	Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 539-546.	3.9	8
18	Enhanced properties of hierarchically-nanostructured undoped acceptor-rich ZnO single-crystal microtube irradiated by UV laser. Journal of Alloys and Compounds, 2019, 789, 841-851.	5.5	11

Yinzhou Yan

#	Article	IF	CITATIONS
19	Photoluminescence Enhancement: Over 1000â€Fold Enhancement of the Unidirectional Photoluminescence from a Microsphereâ€Cavityâ€Arrayâ€Capped QD/PDMS Composite Film for Flexible Lighting and Displays (Advanced Optical Materials 24/2019). Advanced Optical Materials, 2019, 7, 1970094.	7.3	0
20	Angle-dependent excitonic luminescence in semiconductor microtube cavity: The self-absorption effect. Journal of Luminescence, 2019, 208, 238-244.	3.1	4
21	Ultraviolet luminescence enhancement of planar wide bandgap semiconductor film by a hybrid microsphere cavity/dual metallic nanoparticles sandwich structure. Optics Express, 2019, 27, 15399.	3.4	16
22	3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. Journal of Materials Science, 2018, 53, 6291-6301.	3.7	142
23	Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method. Journal of Crystal Growth, 2018, 491, 97-102.	1.5	5
24	Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array. Applied Optics, 2018, 57, 7740.	1.8	7
25	Ultrathin alumina membranes for the fabrication of blackberry-like gold nanostructure arrays. Journal of Materials Science, 2018, 53, 16122-16131.	3.7	4
26	Optimized optical vapor supersaturated precipitation for time-saving growth of ultrathin-walled ZnO single-crystal microtubes. Journal of Crystal Growth, 2018, 498, 25-34.	1.5	5
27	Flexible Dielectric Microsphere-Embedded Film for Enhanced-Raman Spectroscopy. , 2018, , .		0
28	Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method. Journal of Crystal Growth, 2017, 468, 638-644.	1.5	19
29	Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 32896-32906.	8.0	33
30	A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Materials, 2017, 9, e442-e442.	7.9	33
31	Free-standing undoped acceptor-rich ZnO microtubes and their unique optical properties as ultrathin-walled microcavites. , 2017, , .		0
32	Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays. Optics Express, 2017, 25, 6000.	3.4	15
33	Porous silicon with double band photoluminescence fabricated by chemical-assisted picosecond laser irradiation. Journal of Laser Applications, 2016, 28, .	1.7	6
34	Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors. Scientific Reports, 2016, 6, 27341.	3.3	29
35	Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection. Optics Express, 2015, 23, 25854.	3.4	33
36	Picosecond laser surface micropatterning of ceramics by optical fiber induction. Applied Physics A: Materials Science and Processing, 2015, 119, 1061-1067.	2.3	3

Yinzhou Yan

#	Article	IF	CITATIONS
37	Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays. Optics Express, 2014, 22, 23552.	3.4	43
38	Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum. ACS Nano, 2014, 8, 1809-1816.	14.6	179
39	CO2 laser high-speed crack-free cutting of thick-section alumina based on close-piercing lapping technique. International Journal of Advanced Manufacturing Technology, 2013, 64, 1611-1624.	3.0	14
40	Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light: Science and Applications, 2013, 2, e104-e104.	16.6	229
41	Laser crack-free cutting technique for thick and dense ceramics. , 2009, , .		2
42	Parallel-axis positioning device for laser processing: Design and applications. , 2009, , .		1
43	A statistical model for research on the focal position effect on the taper of laser drilling. , 2008, , .		0
44	Study on the machining process of a new laser crack-free cutting technique for ceramics. , 2008, , .		0