
Panos Zanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3338373/publications.pdf Version: 2024-02-01

Ρλήος Ζλήος

#	Article	IF	CITATIONS
1	NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533, 481-486.	13.7	1,246
2	Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacological Reviews, 2018, 70, 621-660.	7.1	723
3	Mechanisms of ketamine action as an antidepressant. Molecular Psychiatry, 2018, 23, 801-811.	4.1	646
4	Convergent Mechanisms Underlying Rapid Antidepressant Action. CNS Drugs, 2018, 32, 197-227.	2.7	127
5	Antidepressant-relevant concentrations of the ketamine metabolite (2 <i>R</i> ,6 <i>R</i>) Tj ETQq1 1 0.7843 Sciences of the United States of America, 2019, 116, 5160-5169.	14 rgBT /O 3.3	verlock 10 Tf 120
6	(<i>2R,6R</i>)-hydroxynorketamine exerts mGlu ₂ receptor-dependent antidepressant actions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6441-6450.	3.3	112
7	The Oxytocin Analogue Carbetocin Prevents Emotional Impairment and Stress-Induced Reinstatement of Opioid-Seeking in Morphine-Abstinent Mice. Neuropsychopharmacology, 2014, 39, 855-865.	2.8	108
8	The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/Glycine _B -Site Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 76-85.	1.3	96
9	Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 159-170.	1.3	89
10	A Negative Allosteric Modulator for α5 Subunit-Containing GABA Receptors Exerts a Rapid and Persistent Antidepressant-Like Action without the Side Effects of the NMDA Receptor Antagonist Ketamine in Mice. ENeuro, 2017, 4, ENEURO.0285-16.2017.	0.9	88
11	Synthesis and <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptor Activity of Ketamine Metabolites. Organic Letters, 2017, 19, 4572-4575.	2.4	64
12	Animal models to improve our understanding and treatment of suicidal behavior. Translational Psychiatry, 2017, 7, e1092-e1092.	2.4	61
13	(<i>R</i>)â€Ketamine exerts antidepressant actions partly via conversion to (<i>2R,6R</i>)â€hydroxynorketamine, while causing adverse effects at subâ€anaesthetic doses. British Journal of Pharmacology, 2019, 176, 2573-2592.	2.7	61
14	Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacological Reviews, 2021, 73, 763-791.	7.1	54
15	Dopamine and Stress System Modulation of Sex Differences in Decision Making. Neuropsychopharmacology, 2018, 43, 313-324.	2.8	53
16	Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism. Pharmacology Biochemistry and Behavior, 2014, 119, 72-79.	1.3	51
17	Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology, 2019, 44, 1788-1796.	2.8	45
18	Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin and CRF systems: Association with an anxiogenic phenotype. Neuropharmacology, 2016, 105, 520-532.	2.0	44

PANOS ZANOS

#	Article	IF	CITATIONS
19	Oxytocin and opioid addiction revisited: old drug, new applications. British Journal of Pharmacology, 2018, 175, 2809-2824.	2.7	42
20	(2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology, 2020, 45, 426-436.	2.8	42
21	A Randomized Trial of the N-Methyl-d-Aspartate Receptor Glycine Site Antagonist Prodrug 4-Chlorokynurenine in Treatment-Resistant Depression. International Journal of Neuropsychopharmacology, 2020, 23, 417-425.	1.0	42
22	The oxytocin analogue carbetocin prevents priming-induced reinstatement of morphine-seeking: Involvement of dopaminergic, noradrenergic and MOPr systems. European Neuropsychopharmacology, 2015, 25, 2459-2464.	0.3	41
23	Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (<i>2R,6R</i>)-hydroxynorketamine. Journal of Psychopharmacology, 2019, 33, 12-24.	2.0	41
24	Environmental enrichment enhances conditioned place preference to ethanol via an oxytocinergic-dependent mechanism in male mice. Neuropharmacology, 2018, 138, 267-274.	2.0	38
25	Effect of chronic heroin and cocaine administration on global DNA methylation in brain and liver. Toxicology Letters, 2013, 218, 260-265.	0.4	36
26	Intracellular Signaling Pathways Involved in (S)- and (R)-Ketamine Antidepressant Actions. Biological Psychiatry, 2018, 83, 2-4.	0.7	33
27	Differential regulation of <scp>mGlu₅R</scp> and <scp>ΜOPr</scp> by priming―and cueâ€induced reinstatement of cocaineâ€seeking behaviour in mice. Addiction Biology, 2015, 20, 902-912.	1.4	31
28	Cocaine abstinence induces emotional impairment and brain regionâ€specific upregulation of the oxytocin receptor binding. European Journal of Neuroscience, 2016, 44, 2446-2454.	1.2	30
29	Zanos et al. reply. Nature, 2017, 546, E4-E5.	13.7	29
30	Sexâ€dependent modulation of ageâ€related cognitive decline by the Lâ€ŧype calcium channel gene <i>Cacna1c</i> (Ca _v 1.2). European Journal of Neuroscience, 2015, 42, 2499-2507.	1.2	26
31	A critical role of striatal A _{2A} R-mGlu ₅ R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine. Addiction Biology, 2016, 21, 811-825.	1.4	23
32	Reply to: Antidepressant Actions of Ketamine Versus Hydroxynorketamine. Biological Psychiatry, 2017, 81, e69-e71.	0.7	22
33	Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration. Neuroscience Letters, 2015, 600, 33-37.	1.0	21
34	Ketamine Mechanism of Action: Separating the Wheat from the Chaff. Neuropsychopharmacology, 2017, 42, 368-369.	2.8	21
35	Isoflurane but Not Halothane Prevents and Reverses Helpless Behavior: A Role for EEG Burst Suppression?. International Journal of Neuropsychopharmacology, 2018, 21, 777-785.	1.0	21
36	Psychological stress enhances tumor growth and diminishes radiation response in preclinical model of lung cancer. Radiotherapy and Oncology, 2020, 146, 126-135.	0.3	21

PANOS ZANOS

#	Article	IF	CITATIONS
37	Alpha2B-Adrenergic Receptor Overexpression in the Brain Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. Toxicological Sciences, 2019, 169, 95-107.	1.4	20
38	Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3â^'/â^' mice, but not wildtype mice. Scientific Reports, 2017, 7, 40399.	1.6	18
39	Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Frontiers in Psychiatry, 2019, 10, 81.	1.3	17
40	Epigenetically modified nucleotides in chronic heroin and cocaine treated mice. Toxicology Letters, 2014, 229, 451-457.	0.4	15
41	Emotional Impairment and Persistent Upregulation of mGlu ₅ Receptor following Morphine Abstinence: Implications of an mGlu ₅ -MOPr Interaction. International Journal of Neuropsychopharmacology, 2016, 19, pyw011.	1.0	15
42	A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicology and Teratology, 2021, 87, 106993.	1.2	15
43	Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2 <i>,</i> 6)- and (5 <i>R</i>)-Methyl-(2 <i>R,</i> 6 <i>R</i>)-hydroxynorketamines. ACS Chemical Neuroscience, 2022, 13, 510-523.	1.7	15
44	Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Molecular Psychiatry, 2022, 27, 4144-4156.	4.1	15
45	Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit–Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biological Psychiatry, 2022, 92, 216-226.	0.7	14
46	Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma. Pharmacology Biochemistry and Behavior, 2020, 196, 172973.	1.3	13
47	Sex-dependent metabolism of ketamine and (<i>2R,6R</i>)-hydroxynorketamine in mice and humans. Journal of Psychopharmacology, 2022, 36, 170-182.	2.0	12
48	Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 423-434.	1.4	11
49	Wheel running during chronic nicotine exposure is protective against mecamylamineâ€precipitated withdrawal and upâ€regulates hippocampal α7 nACh receptors in mice. British Journal of Pharmacology, 2018, 175, 1928-1943.	2.7	10
50	Antidepressant Effects and Mechanisms of Group II mGlu Receptor-Specific Negative Allosteric Modulators. Neuron, 2020, 105, 1-3.	3.8	9
51	Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. IScience, 2021, 24, 103048.	1.9	8
52	Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Translational Psychiatry, 2022, 12, 179.	2.4	8
53	Classical conditioning of antidepressant placebo effects in mice. Psychopharmacology, 2020, 237, 93-102.	1.5	7
54	F102. Human Experimenter Sex Modulates Mouse Behavioral Responses to Stress and to the Antidepressant Ketamine. Biological Psychiatry, 2018, 83, S277.	0.7	6

PANOS ZANOS

#	Article	IF	CITATIONS
55	Chronic nicotine administration restores brain region specific upregulation of oxytocin receptor binding levels in a G72 mouse model of schizophrenia. European Journal of Neuroscience, 2019, 50, 2255-2263.	1.2	6
56	790. Ketamine Exerts NMDAR Inhibition-Independent Antidepressant Actions via Its Hydroxynorketamine Metabolites. Biological Psychiatry, 2017, 81, S321.	0.7	1
57	80. Theories on the Mechanism of Action of Ketamine: From NMDA Receptor Inhibition to the (2R,6R)-HNK Metabolite. Biological Psychiatry, 2017, 81, S33-S34.	0.7	0
58	T89. Group II Metabotropic Glutamate Receptor Blockade Promotes Stress Resilience. Biological Psychiatry, 2018, 83, S163.	0.7	0