
Marco T Nunez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron, the endolysosomal system and neuroinflammation: a matter of balance. Neural Regeneration Research, 2022, 17, 1003.	1.6	6
2	Iron Neurotoxicity in Parkinson's Disease. , 2021, , 1-24.		0
3	Inflaming the Brain with Iron. Antioxidants, 2021, 10, 61.	2.2	49
4	Coumarin-Chalcone Hybrids as Inhibitors of MAO-B: Biological Activity and In Silico Studies. Molecules, 2021, 26, 2430.	1.7	15
5	The calcium–iron connection in ferroptosis-mediated neuronal death. Free Radical Biology and Medicine, 2021, 175, 28-41.	1.3	35
6	Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process. PLoS ONE, 2019, 14, e0218123.	1.1	7
7	Noxious Iron–Calcium Connections in Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 48.	1.4	44
8	New perspectives in iron chelation therapy for the treatment of Parkinson's disease. Neural Regeneration Research, 2019, 14, 1905.	1.6	8
9	Reactive oxygen species released from astrocytes treated with amyloid beta oligomers elicit neuronal calcium signals that decrease phospho-Ser727-STAT3 nuclear content. Free Radical Biology and Medicine, 2018, 117, 132-144.	1.3	19
10	New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals, 2018, 11, 109.	1.7	101
11	Detection of SO ₂ derivatives using a new chalco-coumarin derivative in cationic micellar media: application to real samples. RSC Advances, 2018, 8, 31261-31266.	1.7	11
12	Hepcidin attenuates amyloid betaâ€induced inflammatory and proâ€oxidant responses in astrocytes and microglia. Journal of Neurochemistry, 2017, 142, 140-152.	2.1	49
13	Cell death induced by mitochondrial complex I inhibition is mediated by Iron Regulatory Protein 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2202-2209.	1.8	25
14	Neuroprotective Effect of a New 7,8-Dihydroxycoumarin-Based Fe2+/Cu2+Chelator in Cell and Animal Models of Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 178-185.	1.7	34
15	Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming. PLoS ONE, 2017, 12, e0169601.	1.1	8
16	Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS ONE, 2017, 12, e0189043.	1.1	15
17	Parkinson's Disease: The Mitochondria-Iron Link. Parkinson's Disease, 2016, 2016, 1-21.	0.6	48
18	Endometrial expression and inÂvitro modulation of the iron transporter divalent metal transporter-1: implications for endometriosis. Fertility and Sterility, 2016, 106, 393-401.	0.5	10

#	Article	IF	CITATIONS
19	Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage. Advances in Experimental Medicine and Biology, 2016, 949, 167-181.	0.8	42
20	Dissecting the role of redox signaling in neuronal development. Journal of Neurochemistry, 2016, 137, 506-517.	2.1	59
21	Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons. PLoS ONE, 2015, 10, e0144848.	1.1	19
22	The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochemical and Biophysical Research Communications, 2015, 463, 787-792.	1.0	42
23	Iron overload–modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertility and Sterility, 2015, 103, 439-447.	0.5	31
24	Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion, 2015, 21, 92-105.	1.6	128
25	Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Letters, 2015, 56, 2437-2440.	0.7	6
26	lron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2015, 309, C558-C567.	2.1	15
27	Synthesis and characterization of a novel fluorescent and colorimetric probe for the detection of mercury (II) even in the presence of relevant biothiols. Tetrahedron Letters, 2015, 56, 5761-5766.	0.7	13
28	The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Frontiers in Pharmacology, 2014, 5, 38.	1.6	186
29	Ryanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons. Frontiers in Molecular Neuroscience, 2014, 7, 13.	1.4	25
30	Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II) and Iron(III) Ions and Their Application in Bio-Imaging. Sensors, 2014, 14, 1358-1371.	2.1	76
31	Substituent effects on reactivity of 3-cinnamoylcoumarins with thiols of biological interest. RSC Advances, 2014, 4, 697-704.	1.7	5
32	A coumarinylaldoxime as a specific sensor for Cu2+ and its biological application. Tetrahedron Letters, 2014, 55, 873-876.	0.7	18
33	Synthesis of coumarin derivatives as fluorescent probes for membrane and cell dynamics studies. European Journal of Medicinal Chemistry, 2014, 76, 79-86.	2.6	5
34	Iron Neurotoxicity in Parkinson's Disease. , 2014, , 789-818.		1
35	Design, synthesis and cellular dynamics studies in membranes of a new coumarin-based "turn-off― fluorescent probe selective for Fe2+. European Journal of Medicinal Chemistry, 2013, 67, 60-63.	2.6	34
36	Inflammation alters the expression of <scp>DMT</scp> 1, <scp>FPN</scp> 1 and hepcidin, and it causes iron accumulation in central nervous system cells. Journal of Neurochemistry, 2013, 126, 541-549.	2.1	288

#	Article	IF	CITATIONS
37	Endocytic pathway of exogenous iron-loaded ferritin in intestinal epithelial (Caco-2) cells. American Journal of Physiology - Renal Physiology, 2013, 304, G655-G661.	1.6	17
38	A selective fluorescent probe for the detection of mercury (II) in aqueous media and its applications in living cells. Tetrahedron Letters, 2012, 53, 6598-6601.	0.7	20
39	Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments3. Journal of Nutrition, 2012, 142, 478-483.	1.3	97
40	Design and synthesis of a new coumarin-based â€~turn-on' fluorescent probe selective for Cu+2. Tetrahedron Letters, 2012, 53, 5280-5283.	0.7	50
41	Iron toxicity in neurodegeneration. BioMetals, 2012, 25, 761-776.	1.8	155
42	The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. BioMetals, 2012, 25, 795-803.	1.8	74
43	Sub-lethal levels of amyloid β-peptide oligomers decrease non-transferrin-bound iron uptake and do not potentiate iron toxicity in primary hippocampal neurons. BioMetals, 2012, 25, 805-813.	1.8	12
44	Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity. Journal of Biological Chemistry, 2011, 286, 13382-13392.	1.6	121
45	Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochemical and Biophysical Research Communications, 2011, 409, 241-246.	1.0	60
46	The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study. Tetrahedron Letters, 2011, 52, 6606-6609.	0.7	28
47	Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Journal of Neural Transmission, 2011, 118, 421-431.	1.4	16
48	Mathematical modeling of the dynamic storage of iron in ferritin. BMC Systems Biology, 2010, 4, 147.	3.0	35
49	Regulatory mechanisms of intestinal iron absorption—Uncovering of a fastâ€response mechanism based on DMT1 and ferroportin endocytosis. BioFactors, 2010, 36, 88-97.	2.6	27
50	Increased Hippocampal Expression of the Divalent Metal Transporter 1 (DMT1) mRNA Variants 1B and +IRE and DMT1 Protein After NMDA-Receptor Stimulation or Spatial Memory Training. Neurotoxicity Research, 2010, 17, 238-247.	1.3	37
51	Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free Radical Biology and Medicine, 2010, 48, 526-534.	1.3	39
52	Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1. American Journal of Physiology - Cell Physiology, 2010, 298, C477-C485.	2.1	38
53	Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. Journal of Neurochemistry, 2009, 109, 1067-1078.	2.1	66
54	Hepcidin inhibits apical iron uptake in intestinal cells. American Journal of Physiology - Renal Physiology, 2008, 294, G192-G198.	1.6	137

#	Article	IF	CITATIONS
55	Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18578-18583.	3.3	354
56	Caco-2 Intestinal Epithelial Cells Absorb Soybean Ferritin by μ2 (AP2)-Dependent Endocytosis. Journal of Nutrition, 2008, 138, 659-666.	1.3	110
57	Upregulation of γ-glutamate-cysteine ligase as part of the long-term adaptation process to iron accumulation in neuronal SH-SY5Y cells. American Journal of Physiology - Cell Physiology, 2007, 292, C2197-C2203.	2.1	17
58	A Role for Reactive Oxygen/Nitrogen Species and Iron on Neuronal Synaptic Plasticity. Antioxidants and Redox Signaling, 2007, 9, 245-255.	2.5	78
59	Calcium, iron and neuronal function. IUBMB Life, 2007, 59, 280-285.	1.5	74
60	Inhibition of iron and copper uptake by iron, copper and zinc. Biological Research, 2006, 39, 95-102.	1.5	105
61	Antioxidant responses of cortex neurons to iron loading. Biological Research, 2006, 39, 103-4.	1.5	8
62	Iron and glutathione at the crossroad of redox metabolism in neurons. Biological Research, 2006, 39, 157-65.	1.5	22
63	Hereditary hemochromatosis: An opportunity for gene therapy. Biological Research, 2006, 39, 113-24.	1.5	10
64	Regulation of transepithelial transport of iron by hepcidin. Biological Research, 2006, 39, 191-3.	1.5	22
65	Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells. Biological Research, 2006, 39, 189-90.	1.5	58
66	Quiescence induced by iron challenge protects neuroblastoma cells from oxidative stress. Journal of Neurochemistry, 2006, 98, 11-19.	2.1	14
67	Apical distribution of HFE–β2-microglobulin is associated with inhibition of apical iron uptake in intestinal epithelia cells. BioMetals, 2006, 19, 379-388.	1.8	17
68	A Role for Reactive Oxygen/Nitrogen Species and Iron on Neuronal Synaptic Plasticity. Antioxidants and Redox Signaling, 2006, .	2.5	1
69	Characterization of mitochondrial iron uptake in HepG2 cells. Biological Research, 2006, 39, 199-201.	1.5	1
70	Clathrin-Mediated Endocytosis of Soybean Ferritin by Caco-2 Cells Blood, 2006, 108, 1571-1571.	0.6	46
71	Antisense gene delivered by an adenoassociated viral vector inhibits iron uptake in human intestinal cells: Potential application in hemochromatosis. Biochemical Pharmacology, 2005, 69, 1559-1566.	2.0	5
72	Iron homeostasis in neuronal cells: a role for IREG1. BMC Neuroscience, 2005, 6, 3.	0.8	60

#	Article	IF	CITATIONS
73	Iron and copper metabolism. Molecular Aspects of Medicine, 2005, 26, 313-327.	2.7	404
74	Oxidative stress promotes Ï,, dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radical Biology and Medicine, 2004, 36, 1393-1402.	1.3	79
75	Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radical Biology and Medicine, 2004, 37, 953-960.	1.3	48
76	Structure and function of amyloid in Alzheimer's disease. Progress in Neurobiology, 2004, 74, 323-349.	2.8	126
77	The Mechanisms for Regulating Absorption of Fe Bis-Glycine Chelate and Fe-Ascorbate in Caco-2 Cells Are Similar. Journal of Nutrition, 2004, 134, 395-398.	1.3	9
78	Copper overload affects copper and iron metabolism in Hep-G2 cells. American Journal of Physiology - Renal Physiology, 2004, 287, G27-G32.	1.6	41
79	Ethanol increases tumor necrosis factor-alpha receptor-1 (TNF-R1) levels in hepatic, intestinal, and cardiac cells. Alcohol, 2004, 33, 9-15.	0.8	14
80	Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. BioMetals, 2003, 16, 215-223.	1.8	107
81	Parallels and contrasts between iron and copper metabolism. BioMetals, 2003, 16, 1-8.	1.8	31
82	Iron-activated iron uptake: a positive feedback loop mediated by iron regulatory protein 1. BioMetals, 2003, 16, 83-90.	1.8	24
83	Tumour necrosis factor-α transcription in transferrin-stimulated human blood mononuclear cells: is transferrin receptor involved in the signalling mechanism?. British Journal of Haematology, 2003, 120, 829-835.	1.2	3
84	DMT1, a physiologically relevant apical Cu ¹⁺ transporter of intestinal cells. American Journal of Physiology - Cell Physiology, 2003, 284, C1525-C1530.	2.1	220
85	An oxidative stress-mediated positive-feedback iron uptake loop in neuronal cells. Journal of Neurochemistry, 2002, 82, 240-248.	2.1	46
86	Iron-induced oxidative damage in colon carcinoma (caco-2) cells. Free Radical Research, 2001, 34, 57-68.	1.5	32
87	Iron-induced oxidative stress up-regulates calreticulin levels in intestinal epithelial (Caco-2) cells. Journal of Cellular Biochemistry, 2001, 82, 660-665.	1.2	39
88	HFE inhibits apical iron uptake by intestinal epithelial (Cacoâ€2) cells. FASEB Journal, 2001, 15, 1276-1278.	0.2	34
89	Overexpression of the Ferritin Iron-responsive Element Decreases the Labile Iron Pool and Abolishes the Regulation of Iron Absorption by Intestinal Epithelial (Caco-2) Cells. Journal of Biological Chemistry, 2000, 275, 1651-1655.	1.6	24
90	The cellular mechanisms of body iron homeostasis. Biological Research, 2000, 33, 133-42.	1.5	15

Marco T Nunez

#	Article	IF	CITATIONS
91	Transferrin stimulates iron absorption, exocytosis, and secretion in cultured intestinal cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1085-C1090.	2.1	23
92	Transferrin and iron salts modulate differently tumor necrosis factor-α secretion by cultured human mononuclear cells1–3. Nutrition Research, 1999, 19, 651-661.	1.3	5
93	Effect of Copper, Cadmium, Mercury, Manganese and Lead on Fe ²⁺ and Fe ³⁺ Absorption in Perfused Mouse Intestine. Digestion, 1998, 59, 671-675.	1.2	25
94	Apotransferrin and Holotransferrin Undergo Different Endocytic Cycles in Intestinal Epithelia (Caco-2) Cells. Journal of Biological Chemistry, 1997, 272, 19425-19428.	1.6	29
95	Intestinal Epithelia (Caco-2) Cells Acquire Iron through the Basolateral Endocytosis of Transferrin. Journal of Nutrition, 1996, 126, 2151-2158.	1.3	19
96	Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry, 1992, 31, 5820-5830.	1.2	37
97	Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles. Journal of Bioenergetics and Biomembranes, 1992, 24, 227-233.	1.0	17
98	Kinetics of iron passage through subcellular compartments of rabbit reticulocytes. Journal of Membrane Biology, 1991, 119, 141-149.	1.0	16
99	Inhibitory effect of a toxic peptide isolated from a waterbloom of Microcystis sp. (cyanobacteria) on iron uptake by rabbit reticulocytes. Toxicon, 1990, 28, 1325-1332.	0.8	10
100	Endocytic vesicles contain a calmodulin-activated Ca2+ pump that mediates the inhibition of acidification by calcium. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1028, 21-24.	1.4	8
101	Assay and characteristics of the iron binding moiety of reticulocyte endocytic vesicles. Journal of Membrane Biology, 1989, 107, 129-135.	1.0	20
102	Transferrin-binding and iron-binding proteins of rabbit reticulocyte plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1980, 598, 293-304.	1.4	30