
Antonio Olmo Ballesteros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology, 2006, 24, 281-287.	4.9	352
2	Laccases and Their Applications: A Patent Review. Recent Patents on Biotechnology, 2008, 2, 10-24.	0.4	251
3	Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme and Microbial Technology, 2005, 36, 391-398.	1.6	219
4	Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. Journal of Biotechnology, 2002, 96, 55-66.	1.9	183
5	Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen. Journal of Biological Chemistry, 2006, 281, 22933-22942.	1.6	168
6	Immobilized Biocatalysts: Novel Approaches and Tools for Binding Enzymes to Supports. Advanced Materials, 2011, 23, 5275-5282.	11.1	152
7	Laboratory Evolution of High-Redox Potential Laccases. Chemistry and Biology, 2010, 17, 1030-1041.	6.2	147
8	Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 2007, 128, 204-211.	1.9	140
9	Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures. , 1999, 65, 10-16.		139
10	Comparative Surface Activities of Di- and Trisaccharide Fatty Acid Esters. Langmuir, 2002, 18, 667-673.	1.6	109
11	Detailed Analysis of Galactooligosaccharides Synthesis with β-Galactosidase from <i>Aspergillus oryzae</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 1081-1087.	2.4	108
12	Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 2007, 132, 75-81.	1.9	106
13	In Vitro Evolution of a Fungal Laccase in High Concentrations of Organic Cosolvents. Chemistry and Biology, 2007, 14, 1052-1064.	6.2	104
14	Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chemistry, 2014, 145, 388-394.	4.2	104
15	Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 299-308.	1.8	99
16	Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 19-27.	1.8	97
17	Galacto-oligosaccharide Synthesis from Lactose Solution or Skim Milk Using the β-Galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 2012, 60, 6391-6398.	2.4	96
18	Analysis of Tween 80 as an esterase/ lipase substrate for lipolytic activity assay. Biotechnology Letters, 1998, 12, 183-186.	0.5	85

#	Article	IF	CITATIONS
19	High-yield production of mono- and di-oleylglycerol by lipase-catalyzed hydrolysis of triolein. Enzyme and Microbial Technology, 1996, 18, 66-71.	1.6	77
20	A Simple Procedure for the Regioselective Synthesis of Fatty Acid Esters of Maltose, Leucrose, Maltotriose and n-Dodecyl Maltosides. Tetrahedron, 2000, 56, 4053-4061.	1.0	73
21	Regioselective Lipase-Catalyzed Synthesis of 3- <i>O</i> -Acyl Derivatives of Resveratrol and Study of Their Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2010, 58, 807-813.	2.4	68
22	Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: Effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 18-25.	1.8	66
23	Enzymatic Synthesis of αâ€Glucosides of Resveratrol with Surfactant Activity. Advanced Synthesis and Catalysis, 2011, 353, 1077-1086.	2.1	64
24	Screening Mutant Libraries of Fungal Laccases in the Presence of Organic Solvents. Journal of Biomolecular Screening, 2005, 10, 624-631.	2.6	62
25	Glucosyltransferases acting on starch or sucrose for the synthesis of oligosaccharides. Canadian Journal of Chemistry, 2002, 80, 743-752.	0.6	59
26	Immobilization of Dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C Supports. Biotechnology Progress, 2004, 20, 1414-1420.	1.3	56
27	Beet Sugar Syrup and Molasses as Low-Cost Feedstock for the Enzymatic Production of Fructo-oligosaccharides. Journal of Agricultural and Food Chemistry, 2006, 54, 2964-2968.	2.4	56
28	Altering the laccase functionality by <i>in vivo</i> assembly of mutant libraries with different mutational spectra. Proteins: Structure, Function and Bioinformatics, 2008, 71, 250-260.	1.5	56
29	Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatalysis and Biotransformation, 2018, 36, 57-67.	1.1	55
30	Dried alginate-entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochemistry, 2013, 48, 677-682.	1.8	53
31	Widening the pH Activity Profile of a Fungal Laccase by Directed Evolution. ChemBioChem, 2013, 14, 934-937.	1.3	52
32	Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation. Applied Microbiology and Biotechnology, 2013, 97, 5743-5752.	1.7	51
33	Immobilization of <i>pycnoporus coccineus</i> laccase on Eupergit C: Stabilization and treatment of olive oil mill wastewaters. Biocatalysis and Biotransformation, 2007, 25, 130-134.	1.1	48
34	Parameters affecting productivity in the lipase-catalysed synthesis of sucrose palmitate. Biocatalysis and Biotransformation, 2005, 23, 19-27.	1.1	42
35	Effect of the Immobilization Method of Lipase from Thermomyces lanuginosus on Sucrose Acylation. Biocatalysis and Biotransformation, 2002, 20, 63-71.	1.1	41
36	Continuous Packed Bed Reactor with Immobilized Î ² -Galactosidase for Production of Galactooligosaccharides (GOS). Catalysts, 2016, 6, 189.	1.6	39

#	Article	IF	CITATIONS
37	Combinatorial Saturation Mutagenesis by In Vivo Overlap Extension for the Engineering of Fungal Laccases. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 719-727.	0.6	37
38	Synthesis and Properties of Ascorbyl Esters Catalyzed by Lipozyme TL IM using Triglycerides as Acyl Donors. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 57-64.	0.8	36
39	Chemical modification of lysine side chains of cyclodextrin glycosyltransferase fromThermoanaerobactercauses a shift from cyclodextrin glycosyltransferase to α-amylase specificity. FEBS Letters, 1999, 445, 333-337.	1.3	33
40	Improved synthesis of sucrose fatty acid monoesters. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 541-546.	0.8	33
41	Encapsulation in LentiKats of Dextransucrase fromLeuconostoc mesenteroidesNRRL B-1299, and its Effect on Product Selectivity. Biocatalysis and Biotransformation, 2003, 21, 325-331.	1.1	32
42	Antitumour activity of fatty acid maltotriose esters obtained by enzymatic synthesis. Biotechnology and Applied Biochemistry, 2005, 42, 35.	1.4	32
43	Conversion of a Carboxylesterase into a Triacylglycerol Lipase by a Random Mutation. Angewandte Chemie - International Edition, 2005, 44, 7553-7557.	7.2	32
44	Combinatorial Saturation Mutagenesis of the Myceliophthora thermophila Laccase T2 Mutant: the Connection between the C-Terminal Plug and the Conserved VSG Tripeptide. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 807-816.	0.6	32
45	Title is missing!. Biotechnology Letters, 1999, 13, 749-755.	0.5	30
46	Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts, 2019, 9, 405.	1.6	29
47	Effect of α-Glucosylation on the Stability, Antioxidant Properties, Toxicity, and Neuroprotective Activity of (–)-Epigallocatechin Gallate. Frontiers in Nutrition, 2019, 6, 30.	1.6	29
48	Vinyl sulfone-activated silica for efficient covalent immobilization of alkaline unstable enzymes: application to levansucrase for fructooligosaccharide synthesis. RSC Advances, 2016, 6, 64175-64181.	1.7	28
49	Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from <i>Bifidobacterium bifidum</i> (Saphera). Journal of Agricultural and Food Chemistry, 2020, 68, 4930-4938.	2.4	27
50	Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. Applied Sciences (Switzerland), 2021, 11, 3212.	1.3	27
51	Characterization and application of a sterol esterase immobilized on polyacrylate epoxy-activated carriers (Dilbeadsâ,,¢). Catalysis Communications, 2008, 9, 539-545.	1.6	26
52	Switching from blue to yellow: altering the spectral properties of a high redox potential laccase by directed evolution. Biocatalysis and Biotransformation, 2013, 31, 8-21.	1.1	25
53	Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous High Fructose Syrup production using packed bed reactor. Food Chemistry, 2020, 309, 125710.	4.2	25
54	Synthesis of maltooligosyl fructofuranosides catalyzed by immobilized cyclodextrin glucosyltransferase using starch as donor. Tetrahedron, 2004, 60, 529-534.	1.0	24

#	Article	IF	CITATIONS
55	Evolved alkaline fungal laccase secreted by Saccharomyces cerevisiae as useful tool for the synthesis of C–N heteropolymeric dye. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 323-330.	1.8	24
56	Synthesis of methyl α-d-glucooligosaccharides by entrapped dextransucrase from Leuconostoc mesenteroides B-1299. Journal of Biotechnology, 2006, 124, 439-445.	1.9	23
57	Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution. Biocatalysis and Biotransformation, 2007, 25, 219-228.	1.1	23
58	Efficient conversion of chitosan into chitooligosaccharides by a chitosanolytic activity from Bacillus thuringiensis. Process Biochemistry, 2018, 73, 102-108.	1.8	22
59	Succinylation of cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 501 enhances its transferase activity using starch as donor. Journal of Biotechnology, 2001, 86, 71-80.	1.9	20
60	Efficient α-Glucosylation of Epigallocatechin Gallate Catalyzed by Cyclodextrin Glucanotransferase from <i>Thermoanaerobacter</i> Species. Journal of Agricultural and Food Chemistry, 2018, 66, 7402-7408.	2.4	20
61	Synthesis of β(1Â→Â3) and β(1Â→Â6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 2021, 49, 14-21.	1.2	20
62	Optimization of Regioselective Î \pm -Glucosylation of Hesperetin Catalyzed by Cyclodextrin Glucanotransferase. Molecules, 2018, 23, 2885.	1.7	19
63	Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules, 2018, 23, 1271.	1.7	19
64	Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts, 2018, 8, 201.	1.6	18
65	Kinetic properties of ATP phosphoribosyltransferase of escherichia coli. Molecular and Cellular Biochemistry, 1976, 11, 131-136.	1.4	16
66	Enzymatic Synthesis of Partially Acylated Sucroses. Annals of the New York Academy of Sciences, 1995, 750, 332-337.	1.8	16
67	Galactooligosaccharide Production from Pantoea anthophila Strains Isolated from "Tejuinoâ€, a Mexican Traditional Fermented Beverage. Catalysts, 2017, 7, 242.	1.6	15
68	Kinetic and Enantioselective Behaviour of Isoenzymes A and B from Candida Rugosa Lipase in the Hydrolysis of Lipids and Esters. Biocatalysis and Biotransformation, 1997, 15, 75-89.	1.1	14
69	Micro-scale procedure for enzyme immobilization screening and operational stability assays. Biotechnology Letters, 2015, 37, 1593-1600.	1.1	14
70	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	1.8	14
71	Effect of Surfactants on Activity and Stability of Native and Chemically Modified Lipases A and B from Candida Rugosa. Biocatalysis and Biotransformation, 1996, 13, 271-285.	1.1	13
72	Lipase-catalyzed preparation of mono- and diesters of ferulic acid. Biocatalysis and Biotransformation, 2015, 33, 89-97.	1.1	11

#	Article	IF	CITATIONS
73	Effect of Chemical Modification of Cyclodextrin Glycosyltransferase (CGTase) from Thermoanaerobacter sp. on Its Activity and Product Selectivitya. Annals of the New York Academy of Sciences, 1998, 864, 183-187.	1.8	10
74	Solubility Measurements of Fatty Acid Glucose and Sucrose Esters in 2-Methyl-2-butanol and Mixtures of 2-Methyl-2-butanol with Dimethyl Sulfoxide. Journal of Chemical & Engineering Data, 2002, 47, 1517-1520.	1.0	10
75	Production and Surfactant Properties of Tert-Butyl α-d-Glucopyranosides Catalyzed by Cyclodextrin Glucanotransferase. Catalysts, 2019, 9, 575.	1.6	10
76	Enzymatic Synthesis of Phloretin αâ€Clucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363, 3079-3089.	2.1	10
77	Chemical modification of carboxylic residues in a cyclodextrin glucanotransferase and its implication in the hydrolysis/transglycosylation ratio of the α-amylase family. Journal of Molecular Catalysis B: Enzymatic, 2003, 26, 57-67.	1.8	9
78	Acylation of subtilisin with long fatty acyl residues affects its activity and thermostability in aqueous medium. FEBS Letters, 1994, 339, 200-204.	1.3	8
79	Computational Studies of Subtilisin-Catalyzed Transesterification of Sucrose: Importance of Entropic Effects ChemBioChem, 2002, 3, 907-910.	1.3	6
80	On the Enzyme Specificity for the Synthesis of Prebiotic Galactooligosaccharides. , 2013, , 23-39.		5
81	Deciphering the molecular specificity of phenolic compounds as inhibitors or glycosyl acceptors of β-fructofuranosidase from Xanthophyllomyces dendrorhous. Scientific Reports, 2019, 9, 17441.	1.6	5
82	Reuse of Immobilized <i>Komagataella phaffii</i> Cells for the Elimination of <scp>d</scp> -Glucose in Syrups of Bioactive Carbohydrates. ACS Food Science & Technology, 2022, 2, 682-690.	1.3	4
83	Enzymatic Synthesis of Oleins in Organic Media. Annals of the New York Academy of Sciences, 1995, 750, 242-245.	1.8	2
84	Stability in the presence of organic solvents of dextransucrase from Leuconostoc mesenteroides NRRL B-512F immobilized in calcium-alginate beads. Progress in Biotechnology, 1998, 15, 535-540.	0.2	2
85	Lipase-Catalyzed Synthesis of Fatty Acid Esters of Trisaccharides. Methods in Molecular Biology, 2018, 1835, 287-296.	0.4	2
86	Low-Lactose, Prebiotic-Enriched Milk. , 2016, , 47-57.		1
87	Editorial – farewell to Prof. David Leak. Biocatalysis and Biotransformation, 2018, 36, 279-279.	1.1	0