List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 2003, 12, 672-680.	1.7	506
2	MEMS Linear and Nonlinear Statics and Dynamics. Microsystems, 2011, , .	0.3	450
3	Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 2007, 48, 153-163.	2.7	392
4	Reduced-Order Models for MEMS Applications. Nonlinear Dynamics, 2005, 41, 211-236.	2.7	256
5	Modeling and simulations of thermoelastic damping in microplates. Journal of Micromechanics and Microengineering, 2004, 14, 1711-1717.	1.5	237
6	The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 2010, 45, 704-713.	1.4	202
7	Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 2005, 15, 1840-1847.	1.5	193
8	On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 2009, 19, 045013.	1.5	128
9	Nonlinear Dynamics of MEMS Arches Under Harmonic Electrostatic Actuation. Journal of Microelectromechanical Systems, 2010, 19, 647-656.	1.7	115
10	On using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applications. Journal of Sound and Vibration, 2014, 333, 555-568.	2.1	105
11	Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	0.7	104
12	An Experimental and Theoretical Investigation of Dynamic Pull-In in MEMS Resonators Actuated Electrostatically. Journal of Microelectromechanical Systems, 2010, 19, 794-806.	1.7	101
13	Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. Journal of Sound and Vibration, 2011, 330, 3182-3195.	2.1	97
14	Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. International Journal of Non-Linear Mechanics, 2020, 119, 103328.	1.4	97
15	Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensors, 2021, 21, 2877.	2.1	94
16	Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters. Scientific Reports, 2017, 7, 41820.	1.6	88
17	Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena. Journal of Computational and Nonlinear Dynamics, 2009, 4, .	0.7	82
18	Characterization of the performance of capacitive switches activated by mechanical shock. Journal of Micromechanics and Microengineering, 2007, 17, 1360-1370.	1.5	64

#	Article	IF	CITATIONS
19	Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 2013, 23, 075012.	1.5	59
20	Computationally Efficient Approaches to Characterize the Dynamic Response of Microstructures Under Mechanical Shock. Journal of Microelectromechanical Systems, 2007, 16, 628-638.	1.7	57
21	Tunable Resonators for Nonlinear Modal Interactions. Scientific Reports, 2016, 6, 34717.	1.6	52
22	The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes. International Journal of Non-Linear Mechanics, 2017, 95, 277-286.	1.4	50
23	Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Materials and Structures, 2010, 19, 035016.	1.8	46
24	An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 2013, 48, 1761-1775.	1.2	46
25	Dynamics of MEMS Arches of Flexible Supports. Journal of Microelectromechanical Systems, 2013, 22, 216-224.	1.7	46
26	Nonlinear-Based MEMS Sensors and Active Switches for Gas Detection. Sensors, 2016, 16, 758.	2.1	46
27	AN IMPERFECT MICROBEAM UNDER AN AXIAL LOAD AND ELECTRIC EXCITATION: NONLINEAR PHENOMENA AND DYNAMICAL INTEGRITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350026.	0.7	44
28	Dynamics of Transition Regime in Bistable Vibration Energy Harvesters. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.0	44
29	Highly Tunable Electrothermally and Electrostatically Actuated Resonators. Journal of Microelectromechanical Systems, 2016, 25, 440-449.	1.7	43
30	One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	43
31	Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load. Journal of Computational and Nonlinear Dynamics, 2007, 2, 232-241.	0.7	42
32	Multiple internal resonances in MEMS arch resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3393-3398.	0.9	41
33	Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dynamics, 2012, 67, 1419-1436.	2.7	40
34	Two-to-one internal resonance of MEMS arch resonators. International Journal of Non-Linear Mechanics, 2018, 107, 64-72.	1.4	40
35	A smart microelectromechanical sensor and switch triggered by gas. Applied Physics Letters, 2016, 109,	1.5	39
36	Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation. Journal of Micromechanics and Microengineering, 2016, 26, 025008.	1.5	38

#	Article	IF	CITATIONS
37	In-Plane MEMS Shallow Arch Beam for Mechanical Memory. Micromachines, 2016, 7, 191.	1.4	37
38	An investigation of the static and dynamic behavior of electrically actuated rectangular microplates. International Journal of Non-Linear Mechanics, 2016, 85, 81-93.	1.4	36
39	Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch. Journal of Microelectromechanical Systems, 2016, 25, 570-578.	1.7	35
40	Highly sensitive and wide-range resonant pressure sensor based on the veering phenomenon. Sensors and Actuators A: Physical, 2019, 300, 111652.	2.0	35
41	Tunable nanoelectromechanical resonator for logic computations. Nanoscale, 2017, 9, 3449-3457.	2.8	34
42	Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II—simultaneous 1:1 and 2:1 internal resonances. Nonlinear Dynamics, 2020, 99, 407-432.	2.7	32
43	Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2016, 138, .	0.9	31
44	A Resonant Gas Sensor Based on Multimode Excitation of a Buckled Microbeam. IEEE Sensors Journal, 2020, 20, 1778-1785.	2.4	31
45	An Experimental and Theoretical Investigation of a Micromirror Under Mixed-Frequency Excitation. Journal of Microelectromechanical Systems, 2015, 24, 1124-1131.	1.7	30
46	Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads. Micromachines, 2017, 8, 14.	1.4	30
47	Multimode MEMS Resonator for Simultaneous Sensing of Vapor Concentration and Temperature. IEEE Sensors Journal, 2018, 18, 10145-10153.	2.4	30
48	Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation. Journal of Micromechanics and Microengineering, 2016, 26, 105009.	1.5	29
49	Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass. Meccanica, 2017, 52, 333-348.	1.2	29
50	Electrothermally Tunable Arch Resonator. Journal of Microelectromechanical Systems, 2017, 26, 837-845.	1.7	29
51	Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating. Journal of Microelectromechanical Systems, 2018, 27, 156-163.	1.7	29
52	Multifrequency excitation of a clamped–clamped microbeam: Analytical and experimental investigation. Microsystems and Nanoengineering, 2016, 2, 16002.	3.4	28
53	Experimental investigation of snap-through motion of in-plane MEMS shallow arches under electrostatic excitation. Journal of Micromechanics and Microengineering, 2016, 26, 015012.	1.5	26
54	Resonator-based M/NEMS logic devices: Review of recent advances. Sensors and Actuators A: Physical, 2020, 302, 111821.	2.0	26

#	Article	IF	CITATIONS
55	Integrity Analysis of Electrically Actuated Resonators With Delayed Feedback Controller. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2011, 133, .	0.9	25
56	Humidity Detection Using Metal Organic Framework Coated on QCM. Journal of Sensors, 2016, 2016, 1-8.	0.6	25
57	Static and Dynamic Amplification Using Strong Mechanical Coupling. Journal of Microelectromechanical Systems, 2016, 25, 916-921.	1.7	25
58	Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part l—linear problem. Nonlinear Dynamics, 2020, 99, 393-405.	2.7	25
59	Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics, 2013, 74, 533-549.	2.7	24
60	Torsion based universal MEMS logic device. Sensors and Actuators A: Physical, 2015, 236, 150-158.	2.0	24
61	Multimode excitation of a metal organics frameworks coated microbeam for smart gas sensing and actuation. Sensors and Actuators A: Physical, 2018, 283, 254-262.	2.0	24
62	Theoretical Prediction of Experimental Jump and Pull-In Dynamics in a MEMS Sensor. Sensors, 2014, 14, 17089-17111.	2.1	23
63	Theoretical and Experimental Investigation of Two-to-One Internal Resonance in MEMS Arch Resonators. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	0.7	23
64	A Study for the Effect of the PCB Motion on the Dynamics of MEMS Devices Under Mechanical Shock. Journal of Microelectromechanical Systems, 2009, 18, 597-609.	1.7	22
65	An experimental and theoretical investigation of electrostatically coupled cantilever microbeams. Sensors and Actuators A: Physical, 2016, 247, 368-378.	2.0	21
66	MEMS Logic Using Mixed-Frequency Excitation. Journal of Microelectromechanical Systems, 2017, 26, 1140-1146.	1.7	21
67	Dynamics of a clamped–clamped microbeam resonator considering fabrication imperfections. Microsystem Technologies, 2015, 21, 2425-2434.	1.2	20
68	Electrothermal Frequency Modulated Resonator for Mechanical Memory. Journal of Microelectromechanical Systems, 2016, 25, 877-883.	1.7	20
69	Wideband MEMS resonator using multifrequency excitation. Sensors and Actuators A: Physical, 2016, 242, 140-145.	2.0	20
70	Highly Tunable Narrow Bandpass MEMS Filter. IEEE Transactions on Electron Devices, 2017, 64, 3392-3398.	1.6	20
71	A Compact Adder and Reprogrammable Logic Gate Using Micro-Electromechanical Resonators With Partial Electrodes. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 2057-2061.	2.2	19
72	On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dynamics, 2019, 95, 2263-2274.	2.7	19

#	Article	IF	CITATIONS
73	Analytical expressions for the electrostatically actuated curled beam problem. Microsystem Technologies, 2015, 21, 1709-1717.	1.2	18
74	Natural frequencies and mode shapes of statically deformed inclined risers. International Journal of Non-Linear Mechanics, 2017, 94, 12-19.	1.4	18
75	A single MEMS resonator for reconfigurable multifunctional logic gates. Journal of Micromechanics and Microengineering, 2018, 28, 095002.	1.5	18
76	Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory. International Journal of Non-Linear Mechanics, 2021, 129, 103664.	1.4	18
77	Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	17
78	Theoretical and experimental investigation of mode localization in electrostatically and mechanically coupled microbeam resonators. International Journal of Non-Linear Mechanics, 2020, 125, 103516.	1.4	17
79	Analytical Study of the Snap-Through and Bistability of Beams With Arbitrarily Initial Shape. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	17
80	A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter. IEEE Transactions on Electron Devices, 2017, 64, 2659-2664.	1.6	16
81	RF MEMS electrostatically actuated tunable capacitors and their applications: a review. Journal of Micromechanics and Microengineering, 2022, 32, 013002.	1.5	16
82	The Effect of Squeeze-Film Damping on the Shock Response of Clamped-Clamped Microbeams. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2012, 134, .	0.9	15
83	Multi-mode excitation of a clamped–clamped microbeam resonator. Nonlinear Dynamics, 2015, 80, 1531-1541.	2.7	15
84	Toward cascadable MEMS logic device based on mode localization. Sensors and Actuators A: Physical, 2020, 315, 112367.	2.0	14
85	A monolithic tunable symmetric bistable mechanism. Smart Materials and Structures, 2020, 29, 075033.	1.8	14
86	Multi-Threshold Inertial Switch for Quantitative Acceleration Measurements. IEEE Sensors Journal, 2021, 21, 23849-23859.	2.4	14
87	Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept. Sensors, 2014, 14, 12149-12173.	2.1	13
88	Experimental and analytical study of highly tunable electrostatically actuated resonant beams. Journal of Micromechanics and Microengineering, 2015, 25, 125015.	1.5	13
89	A Microbeam Resonator With Partial Electrodes for Logic and Memory Elements. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2017, 3, 83-92.	1.1	13
90	Electrothermally actuated tunable clamped-guided resonant microbeams. Mechanical Systems and Signal Processing, 2018, 98, 1069-1076.	4.4	13

#	Article	IF	CITATIONS
91	Dynamics of V-Shaped Electrothermal MEMS-Based Resonators. Journal of Microelectromechanical Systems, 2020, 29, 1372-1381.	1.7	13
92	Experimental and theoretical investigation of the 2:1 internal resonance in the higher-order modes of a MEMS microbeam at elevated excitations. Journal of Sound and Vibration, 2021, 499, 115983.	2.1	13
93	Modeling of Beam Electrothermal Actuators. Journal of Microelectromechanical Systems, 2020, 29, 1570-1581.	1.7	12
94	Selective multiple analyte detection using multi-mode excitation of a MEMS resonator. Scientific Reports, 2022, 12, 5297.	1.6	12
95	Axially modulated arch resonator for logic and memory applications. Mechatronics, 2018, 56, 254-260.	2.0	11
96	Multifrequency excitation of an inclined marine riser under internal resonances. Nonlinear Dynamics, 2020, 99, 149-171.	2.7	11
97	Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis. Nonlinear Dynamics, 2021, 103, 2197-2226.	2.7	11
98	Resonator-Based Bidirectional Lorentz Force Magnetic Sensor. IEEE Electron Device Letters, 2021, 42, 406-409.	2.2	11
99	Static and dynamic actuations of clamped-clamped V-shaped micro-resonators under electrostatic forces. Mechanical Systems and Signal Processing, 2021, 155, 107571.	4.4	11
100	Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 2013, 57, 208-219.	1.4	10
101	Highly Tunable Electrostatic Nanomechanical Resonators. IEEE Nanotechnology Magazine, 2018, 17, 113-121.	1.1	10
102	A Low Power Micro-Electromechanical Resonator-Based Digital to Analog Converter. Journal of Microelectromechanical Systems, 2020, 29, 320-328.	1.7	10
103	Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. Journal of Micromechanics and Microengineering, 2006, 16, 2463-2474.	1.5	10
104	A 2:1 MUX Based on Multiple MEMS Resonators. Procedia Engineering, 2016, 168, 1642-1645.	1.2	9
105	An analytic solution of the static problem of inclined risers conveying fluid. Meccanica, 2017, 52, 1175-1187.	1.2	9
106	A parity checker circuit based on microelectromechanical resonator logic elements. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 843-848.	0.9	9
107	Dynamics of Microbeams under Multi-Frequency Excitations. Micromachines, 2017, 8, 32.	1.4	9
108	Three-to-one internal resonance of inclined marine riser. International Journal of Non-Linear Mechanics, 2019, 109, 107-117.	1.4	9

#	Article	IF	CITATIONS
109	Design, modeling, and testing of a bidirectional multi-threshold MEMS inertial switch. Sensors and Actuators A: Physical, 2022, 334, 113219.	2.0	9
110	Delayed feedback controller for microelectromechanical systems resonators undergoing large motion. JVC/Journal of Vibration and Control, 2015, 21, 2604-2615.	1.5	8
111	Microelectromechanical resonator based digital logic elements. , 2016, , .		8
112	Mixed frequency excitation of an electrostatically actuated resonator. Microsystem Technologies, 2016, 22, 1967-1974.	1.2	8
113	Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads. Sensors and Actuators A: Physical, 2018, 273, 19-29.	2.0	8
114	Highly Sensitive Resonant Magnetic Sensor Based on the Veering Phenomenon. IEEE Sensors Journal, 2021, 21, 13165-13175.	2.4	8
115	Crossover/Veering in V-Shaped MEMS Resonators. Journal of Microelectromechanical Systems, 2022, 31, 74-86.	1.7	8
116	Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 2017, 228, 1029-1043.	1.1	7
117	A MEMS coupled resonator for frequency filtering in air. Mechatronics, 2018, 56, 261-267.	2.0	7
118	Two-to-one internal resonance of an inclined marine riser under harmonic excitations. Nonlinear Dynamics, 2019, 95, 1301-1321.	2.7	7
119	On the double resonance activation of electrostatically actuated microbeam based resonators. International Journal of Non-Linear Mechanics, 2020, 121, 103437.	1.4	7
120	Investigating Mode Localization at Lower- and Higher-Order Modes in Mechanically Coupled MEMS Resonators. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	0.7	7
121	Recent advances on MEMS based Infrared Thermopile detectors. Microsystem Technologies, 2022, 28, 1751-1764.	1.2	7
122	Multi-Threshold Inertial Switch With Acceleration Direction Detection Capability. IEEE Transactions on Industrial Electronics, 2023, 70, 4226-4235.	5.2	7
123	Investigation of the dynamics of a clamped–clamped microbeam near symmetric higher order modes using partial electrodes. International Journal of Dynamics and Control, 2015, 3, 173-182.	1.5	6
124	An investigation into the mechanical behavior of multi- input and multi-output MEMS resonators. Sensors and Actuators A: Physical, 2018, 280, 309-318.	2.0	6
125	On the response of MEMS resonators under generic electrostatic loadings: theoretical analysis. Nonlinear Dynamics, 2019, 97, 967-977.	2.7	6
126	A Nanoelectromechanical Resonator-Based Flash Style Analog to Digital Converter. , 2020, , .		6

8

#	Article	IF	CITATIONS
127	A Wideband Magnetic Frequency Upâ€Converter Energy Harvester. Advanced Engineering Materials, 2021, 23, 2001364.	1.6	6
128	Static and Dynamic Analysis of Electrostatically Actuated MEMS Shallow Arches for Various Air-Gap Configurations. Micromachines, 2021, 12, 930.	1.4	6
129	A state space approach for the eigenvalue problem of marine risers. Meccanica, 2018, 53, 747-757.	1.2	5
130	Design and Demonstration of A Compact Full Adder Using Micro-beam Resonators. , 2018, , .		5
131	On the Application of the Multiple Scales Method on Electrostatically Actuated Resonators. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	0.7	5
132	Miniature pressure sensor based on suspended MWCNT. Sensors and Actuators A: Physical, 2019, 292, 11-16.	2.0	5
133	Highly sensitive low field Lorentz-force MEMS magnetometer. Scientific Reports, 2021, 11, 21634.	1.6	5
134	Simultaneous gas and magnetic sensing using a single heated micro-resonator. Sensors and Actuators A: Physical, 2022, 344, 113688.	2.0	5
135	Multi-function and cascadable MEMS logic device. , 2017, , .		4
136	Fabrication and Characterization of MWCNT-Based Bridge Devices. IEEE Nanotechnology Magazine, 2017, 16, 1037-1046.	1.1	4
137	Task feasibility of V shape electrothermal actuators. Engineering Research Express, 2020, 2, 035035.	0.8	4
138	Nonlinear mode saturation in a U-shaped micro-resonator. Scientific Reports, 2022, 12, .	1.6	4
139	Control of Bouncing in MEMS Switches Using Double Electrodes. Mathematical Problems in Engineering, 2016, 2016, 1-10.	0.6	3
140	Experimental Investigation of 2:1 and 3:1 Internal Resonances in Nonlinear MEMS Arch Resonators. , 2016, , .		3
141	Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers. , 2016, , .		3
142	Approaches for Reduced-Order Modeling of Electrically Actuated von-Karman Microplates. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	3
143	Interpreting and Predicting Experimental Responses of Micro- and Nano-Devices via Dynamical Integrity. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2019, , 113-166.	0.3	3
144	Dynamics Characterization of a U-Shaped Micro-Resonator Portal Frame. Journal of Microelectromechanical Systems, 2020, 29, 1362-1371.	1.7	3

#	Article	IF	CITATIONS
145	A symmetrical bistable mechanism from combination of pre-shaped microbeams. Sensors and Actuators A: Physical, 2020, 306, 111961.	2.0	3
146	Nonparametric identification of a micro-electromechanical resonator. Mechanical Systems and Signal Processing, 2021, 161, 107932.	4.4	3
147	The static and dynamic behavior of MEMS arches under electrostatic actuation. , 2009, , .		2
148	Controlling dynamic pull-in escape in electrostatic MEMS. , 2009, , .		2
149	Jump and pull-in dynamics of an electrically actuated bistable MEMS device. MATEC Web of Conferences, 2014, 16, 04001.	0.1	2
150	Dynamics of an Imperfect Microbeam Considering its Exact Shape. , 2014, , .		2
151	Axially Modulated Clamped-Guided Arch Resonator for Memory and Logic Applications. , 2017, , .		2
152	Electrothermally Actuated Microbeams With Varying Stiffness. , 2017, , .		2
153	Nanoelectromechanical resonator for logic operations. , 2017, , .		2
154	A Sensitive Resonant Gas Sensor Based on Multimode Excitation of a Buckled Beam. , 2019, , .		2
155	Efficient Activation of Nanomechanical Resonators. Advanced Electronic Materials, 2019, 5, 1800356.	2.6	2
156	Spring-Shaped Inductor Tuned With a Microelectromechanical Electrothermal Actuator. IEEE Magnetics Letters, 2020, 11, 1-5.	0.6	2
157	Statics and Dynamics of V-Shaped Microbeams Under Axial Forces. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	0.7	2
158	Analytical and experimental study of the dynamics of a micro-electromechanical resonator based digital-to-analog converter. Journal of Micromechanics and Microengineering, 2021, 31, 125010.	1.5	2
159	Modeling the effects of the PCB motion on the response of microstructures under mechanical shock. , 2010, , .		1
160	Nonlinear Dynamic Response of an Electrically Actuated Imperfect Microbeam Resonator. , 2013, , .		1
161	Investigation of a Delayed Feedback Controller of MEMS Resonators. , 2013, , .		1
162	An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes. , 2014, , .		1

An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes. , 2014, , . 162

#	Article	IF	CITATIONS
163	Static Response of Microbeams due to Capillary and Electrostatic Forces. , 2015, , .		1
164	Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam. , 2016, , .		1
165	The Effect of an Added Mass on the Frequency Shifts of a Clamped-Clamped Microbeam for Bio-Mass Detection. , 2016, , .		1
166	Nonlinear-Based MEMS Sensors and Active Switches for Gas and Acceleration Applications. Proceedings (mdpi), 2016, 1, .	0.2	1
167	In-Plane Air Damping of NEMS and MEMS Resonators. , 2018, , .		1
168	Mechanical Computing Using Multifrequency Excited NEMS Resonator. , 2018, , .		1
169	Nonparametric Identification of a Nonlinear MEMS Resonator. , 2022, , 405-415.		1
170	Nonlinear Dynamics of an Electrically Actuated MEMS Device: Experimental and Theoretical Investigation. , 2013, , .		0
171	Electrostatically actuated resonant switches for earthquake detection. , 2013, , .		0
172	Investigation of the Dynamics of a Clamped-Clamped Microbeam Near the Third Mode Using a Partial Electrode. , 2014, , .		0
173	Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem. , 2014, , .		0
174	Multifrequency Excitation of a Clamped-Clamped Microbeam. , 2015, , .		0
175	The Dynamics of a Doubly Clamped Microbeam Near the Primary Resonance: Experimental and Analytical Investigation. , 2015, , .		0
176	An Experimental Investigation of the Dynamic Behavior of an In-Plane MEMS Shallow Arch Under Electrostatic Excitation. , 2015, , .		0
177	Investigation of the nonlinear static and dynamic behaviour of rectangular microplates under electrostatic actuation. MATEC Web of Conferences, 2016, 83, 04005.	0.1	0
178	Electrothermally Tunable Bridge Resonator. , 2016, , .		0
179	Static and Dynamic Amplification Using Strong Mechanical Coupling. , 2016, , .		0
180	Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation. , 2016, , .		0

#	Article	IF	CITATIONS
181	Initially Imperfect MEMS Microplates Under Electrostatic Actuation: Theory and Experiment. , 2016, , .		Ο
182	Nonlinear-Based Switch Triggered by Gas Using Electrostatically Actuated Microbeams. , 2016, , .		0
183	Highly Tunable Electrothermally Actuated Arch Resonator. , 2016, , .		Ο
184	On the Nonlinear Dynamics of a Doubly Clamped Microbeam Near Primary Resonance. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.0	0
185	Effect of Initial Curvature on the Static and Dynamic Behavior of MEMS Resonators. , 2017, , .		Ο
186	Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating. , 2017, , .		0
187	MEMS Coupled Resonator for Filter Application in Air. , 2017, , .		Ο
188	An Electrically Actuated Microbeam-Based MEMS Device: Experimental and Theoretical Investigation. , 2017, , .		0
189	Highly tunable NEMS shallow arches. , 2017, , .		0
190	Scalable Pressure Sensor Based on Electrothermally Operated Resonator. , 2017, , .		0
191	Experimental and Theoretical Study of Two-to-One Internal Resonance of MEMS Resonators. , 2018, , .		0
192	An Experimental and Theoretical Investigation of Double Resonance Activation in Electrostatic MEMS Resonators. , 2018, , .		0
193	Complex Logic Operations Based on MEMS Resonators. , 2018, , .		0
194	Parallel Logics Using Multimode Excitation of a Single MEMS Resonator. , 2019, , .		0
195	Multi-Inputs and Multi-Outputs Mems Resonator for Complex Logic Operations. , 2019, , .		0
196	Multi-Threshold MEMS Shock Sensor for Quantitative Acceleration Measerements. , 2021, , .		0
197	Electrostatically Tunable Nanomechanical Shallow Arches. , 2017, , .		0
198	Wide Range Highly Sensitive Pressure Sensor Based on Heated Micromachined Arch Beam. , 2019, , .		0

#	Article	IF	CITATIONS
199	2:1 MUX and OR Logic Functions Using Triple Partial Electrodes: Toward Cascadable MEMS Logic Devices. , 2020, , .		0
200	Multi-Inputs/Outputs and Cascadable MEMS Resonator-Based Computing Devices. , 2020, , .		0
201	Parametric resonance of bi-directional axial loads shallow arch microresonators. Journal of Micromechanics and Microengineering, 2022, 32, 054004.	1.5	0