
Christhina Candido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3337316/publications.pdf Version: 2024-02-01

CHRISTHINA CANDIDO

#	Article	IF	CITATIONS
1	Progress in thermal comfort research over the last twenty years. Indoor Air, 2013, 23, 442-461.	2.0	363
2	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
3	Gender differences in office occupant perception of indoor environmental quality (IEQ). Building and Environment, 2013, 70, 245-256.	3.0	181
4	Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone. Building and Environment, 2010, 45, 222-229.	3.0	164
5	Adaptive thermal comfort in Australian school classrooms. Building Research and Information, 2015, 43, 383-398.	2.0	158
6	Desk ownership in the workplace: The effect of non-territorial working on employee workplace satisfaction, perceived productivity and health. Building and Environment, 2016, 103, 203-214.	3.0	120
7	BOSSA: a multidimensional post-occupancy evaluation tool. Building Research and Information, 2016, 44, 214-228.	2.0	87
8	Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy and Buildings, 2017, 141, 274-283.	3.1	86
9	Combined thermal acceptability and air movement assessments in a hot humid climate. Building and Environment, 2011, 46, 379-385.	3.0	83
10	The effects of higher temperature setpoints during summer on office workers' cognitive load and thermal comfort. Building and Environment, 2017, 123, 176-188.	3.0	80
11	Thermal pleasure in built environments: alliesthesia in different thermoregulatory zones. Building Research and Information, 2016, 44, 20-33.	2.0	74
12	Designing activity-based workspaces: satisfaction, productivity and physical activity. Building Research and Information, 2019, 47, 275-289.	2.0	74
13	Thermal comfort in office buildings: Findings from a field study in mixed-mode and fully-air conditioning environments under humid subtropical conditions. Building and Environment, 2017, 123, 672-683.	3.0	61
14	Cooling exposure in hot humid climates: are occupants â€~addicted'?. Architectural Science Review, 2010, 53, 59-64.	1.1	50
15	Thermal comfort during temperature cycles induced by direct load control strategies of peak electricity demand management. Building and Environment, 2016, 103, 9-20.	3.0	42
16	Thermal acceptability assessment in buildings located in hot and humid regions in Brazil. Building and Environment, 2010, 45, 1225-1232.	3.0	40
17	Towards a Brazilian standard for naturally ventilated buildings: guidelines for thermal and air movement acceptability. Building Research and Information, 2011, 39, 145-153.	2.0	35
18	Differences in Occupants' Satisfaction and Perceived Productivity in High- and Low-Performance Offices. Buildings, 2019, 9, 199.	1.4	35

CHRISTHINA CANDIDO

#	Article	IF	CITATIONS
19	Effects of artificially induced heat acclimatization on subjects' thermal and air movement preferences. Building and Environment, 2012, 49, 251-258.	3.0	26
20	The Rise of Office Design in High-Performance, Open-Plan Environments. Buildings, 2019, 9, 100.	1.4	26
21	From thermal boredom to thermal pleasure: a brief literature review. Ambiente ConstruÃdo, 2012, 12, 81-90.	0.2	24
22	ASHRAE 55 adaptive model application in hot and humid climates: the Brazilian case. Architectural Science Review, 2015, 58, 93-101.	1.1	22
23	Designing healthy workspaces: results from Australian certified open-plan offices. Facilities, 2020, 39, 411-433.	0.8	20
24	The next generation of experientially realistic lab-based research: The University of Sydney's Indoor Environmental Quality Laboratory. Architectural Science Review, 2013, 56, 83-92.	1.1	12
25	Occupants' satisfaction and perceived productivity in open-plan offices designed to support activity-based working: findings from different industry sectors. Journal of Corporate Real Estate, 2021, 23, 106-129.	1.2	12
26	Aplicabilidade dos limites da velocidade do ar para efeito de conforto térmico em climas quentes e úmidos. Ambiente ConstruÃdo, 2010, 10, 59-68.	0.2	11
27	A review of research in activity-based working over the last ten years: lessons for the post-COVID workplace. Journal of Facilities Management, 2023, 21, 313-333.	1.0	10
28	A Biophilic Design Approach for Improved Energy Performance in Retrofitting Residential Projects. Sustainability, 2022, 14, 3776.	1.6	10
29	Variation of indoor minimum mortality temperature in different cities: Evidence of local adaptations. Environmental Pollution, 2019, 246, 745-752.	3.7	8
30	A Ten-Year Review of Primary School Flexible Learning Environments: Interior Design and IEQ Performance. Buildings, 2021, 11, 183.	1.4	8
31	Conforto térmico humano em escritórios com sistema central de condicionamento artificial em clima subtropical úmido: estudos de campo vs. abordagem analÃŧica. Ambiente ConstruÃdo, 2017, 17, 111-123.	0.2	5
32	O efeito da utilização de ventiladores de teto no conforto térmico em salas de aulas com condicionamento hÃbrido em um local de clima quente e úmido. Ambiente ConstruÃdo, 2013, 13, 189-202.	0.2	5
33	Towards onsite, modular robotic carbon-fibre winding for an integrated ceiling structure. Construction Robotics, 2019, 3, 23-40.	1.2	4
34	Overlaps in space utilisation patterns and IEQ conditions observed in Activity-Based Working supportive office. Building and Environment, 2022, 220, 109273.	3.0	4
35	Indoor temperatures for optimum thermal comfort and human performance - Reply to the letter by Wyon and Wargocki. Indoor Air, 2014, 24, 554-555.	2.0	3
36	Can commercial buildings cope with Australian bushfires? An IAQ analysis. Buildings and Cities, 2021, 2, 583-598.	1.1	2

#	Article	lF	CITATIONS
37	Development of an urban health and wellbeing index for work precincts: A comparative study in Sydney, Australia. Frontiers of Architectural Research, 2022, 11, 402-420.	1.3	2
38	The Potential of Harnessing Real-Time Occupancy Data for Improving Energy Performance of Activity-Based Workplaces. Energies, 2022, 15, 230.	1.6	2
39	My home is making me sick! Implications of poor indoor environment quality on mould growth. , 2021, ,		0