
Federica Moschella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3336847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nicotinamide inhibits melanoma in vitro and in vivo. Journal of Experimental and Clinical Cancer Research, 2020, 39, 211.	3.5	30
2	Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 582744.	2.2	9
3	Clinical and Immunological Outcomes in High-Risk Resected Melanoma Patients Receiving Peptide-Based Vaccination and Interferon Alpha, With or Without Dacarbazine Preconditioning: A Phase II Study. Frontiers in Oncology, 2020, 10, 202.	1.3	6
4	Disruption of IFN-I Signaling Promotes HER2/Neu Tumor Progression and Breast Cancer Stem Cells. Cancer Immunology Research, 2018, 6, 658-670.	1.6	34
5	Role of interferon regulatory factor 1 in governing <scp>T</scp> reg depletion, <scp>T</scp> h1 polarization, inflammasome activation and antitumor efficacy of cyclophosphamide. International Journal of Cancer, 2018, 142, 976-987.	2.3	32
6	The added value of type I interferons to cytotoxic treatments of cancer. Cytokine and Growth Factor Reviews, 2017, 36, 89-97.	3.2	25
7	Twenty-five years of type I interferon-based treatment: A critical analysis of its therapeutic use. Cytokine and Growth Factor Reviews, 2015, 26, 121-131.	3.2	43
8	Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. Journal of Translational Medicine, 2015, 13, 139.	1.8	36
9	Exploiting dendritic cells in the development of cancer vaccines. Expert Review of Vaccines, 2013, 12, 1195-1210.	2.0	15
10	The Janus face of cyclophosphamide. OncoImmunology, 2013, 2, e25789.	2.1	23
11	Cyclophosphamide Induces a Type I Interferon–Associated Sterile Inflammatory Response Signature in Cancer Patients' Blood Cells: Implications for Cancer Chemoimmunotherapy. Clinical Cancer Research, 2013, 19, 4249-4261.	3.2	73
12	Exploitation of the propulsive force of chemotherapy for improving the response to cancer immunotherapy. Molecular Oncology, 2012, 6, 1-14.	2.1	48
13	Unraveling Cancer Chemoimmunotherapy Mechanisms by Gene and Protein Expression Profiling of Responses to Cyclophosphamide. Cancer Research, 2011, 71, 3528-3539.	0.4	72
14	MHV-68 producing mIFN $\hat{l}\pm1$ is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68. Vaccine, 2011, 29, 3935-3944.	1.7	5
15	Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Annals of the New York Academy of Sciences, 2010, 1194, 169-178.	1.8	64
16	Chemotherapy enhances vaccineâ€induced antitumor immunity in melanoma patients. International Journal of Cancer, 2009, 124, 130-139.	2.3	103
17	Cyclophosphamide Enhances the Antitumor Efficacy of Adoptively Transferred Immune Cells through the Induction of Cytokine Expression, B-Cell and T-Cell Homeostatic Proliferation, and Specific Tumor Infiltration. Clinical Cancer Research, 2007, 13, 644-653.	3.2	228
18	Identification of Tissue-Restricted Transcripts in Human Islets. Endocrinology, 2004, 145, 4513-4521.	1.4	87

Federica Moschella

#	Article	IF	CITATIONS
19	Administration of different antigenic forms of altered peptide ligands derived from HIV-1 RTase influences their effects on T helper cell activation. Human Immunology, 2003, 64, 1-8.	1.2	2
20	Shifting Gene Expression Profiles During Ex Vivo Culture of Renal Tumor Cells: Implications for Cancer Immunotherapy. Oncology Research, 2003, 14, 133-145.	0.6	7
21	Gene expression profiling and functional activity of human dendritic cells induced with IFN-alpha-2b: implications for cancer immunotherapy. Clinical Cancer Research, 2003, 9, 2022-31.	3.2	27
22	Recombinant antigens to establish a model of autoimmunity in mice. Transplantation Proceedings, 2001, 33, 57.	0.3	0
23	Transcript profiling of human dendritic cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. British Journal of Haematology, 2001, 114, 444-457.	1.2	31
24	Modulation of TCR recognition of MHC class II/peptide by processed remote N- and C-terminal epitope extensions. Human Immunology, 2000, 61, 753-763.	1.2	16
25	In vitro immunization with a recombinant antigen carrying the HIV-1 RT248–262 determinant inserted at different locations results in altered TCRVB region usage. Human Immunology, 1999, 60, 755-763.	1.2	3