Jing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3336129/publications.pdf

Version: 2024-02-01

933447 794594 50 426 10 19 h-index citations g-index papers 51 51 51 374 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Fabrication of TiO2 nanorods on Si pillars surface for photosensitive application. Journal of Materials Science: Materials in Electronics, 2022, 33, 8171-8178.	2.2	1
2	Fabrication of ZnS layer on silicon nanopillars surface for photoresistor application. Chemical Physics Letters, 2022, 801, 139716.	2.6	1
3	Fabrication of the ZnO nanowires/TiO2 nanowires/Si micropillars structures for the gas sensor application. Sensors and Actuators A: Physical, 2022, 345, 113665.	4.1	6
4	Fabrication of micro-slot optics on curved substrate by X-ray lithography and electroplating. Microsystem Technologies, 2021, 27, 1895-1900.	2.0	4
5	The Influence of Silicon Nanopillars Structure as the Substrate on the SnO ₂ â€Based Gas Sensor. ChemistrySelect, 2021, 6, 3982-3987.	1.5	2
6	Fabrication and photosensitivity of ZnO/CdS/silica nanopillars based photoresistor. Journal of Materials Science: Materials in Electronics, 2021, 32, 11326-11333.	2.2	3
7	ZnO Nanowires/CdS Nanorods Structure Grown on Silica Micropillars Array for Photosensitive Application. Electronic Materials Letters, 2021, 17, 507-512.	2.2	1
8	Study of Pt growth on Si, Al2O3, Au, and Ni surfaces by plasma enhanced atomic layer deposition. Journal of Applied Physics, 2021, 130, 105305.	2.5	2
9	Fabrication of tree-like CdS nanorods-Si pillars structure for photosensitive application. Journal of Materials Science: Materials in Electronics, 2020, 31, 11862-11869.	2.2	9
10	Fabrication of CdS Nanorods on Si Pyramid Surface for Photosensitive Application. ACS Omega, 2020, 5, 11695-11700.	3.5	5
11	The property research of the transmission sinusoidal grating with fabrication of LIGA process. Optoelectronics Letters, 2019, 15, 335-338.	0.8	O
12	Preparation of CdS nanorods on silicon nanopillars surface by hydrothermal method. Materials Research Bulletin, 2019, 120, 110591.	5.2	11
13	Fabrication and properties of ZnO nanorods on silicon nanopillar surface for gas sensor application. Journal of Materials Science: Materials in Electronics, 2019, 30, 11404-11411.	2.2	18
14	Fabrication and properties of micro-nano structure based heterojunction solar cell and photoresistor. Materials Research Express, 2019, 6, 075024.	1.6	5
15	Fabrication and photovoltaic effect of ZnO/silicon nanopillars heterojunction solar cell. Microsystem Technologies, 2018, 24, 1919-1923.	2.0	7
16	A method to fabricate high-aspect-ratio microstructures using PMMA photoresist. Microsystem Technologies, 2018, 24, 1223-1226.	2.0	3
17	Influence of the bridges on prism-array lens focusing for high energy X-rays. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 910, 115-120.	1.6	0
18	Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging. International Journal of Modern Physics B, 2018, 32, 1850163.	2.0	2

#	Article	IF	CITATIONS
19	Fabrication of microelectrodes on diamond anvil for the resistance measurement in high pressure experiment. Microsystem Technologies, 2018, 24, 3193-3199.	2.0	O
20	Fabrication of high energy X-ray compound kinoform lenses using X-ray lithography. Microsystem Technologies, 2017, 23, 1553-1562.	2.0	4
21	Design and property study of micro-slot optics. Optics Communications, 2017, 386, 14-21.	2.1	11
22	Fabrication and Photosensitivity of CdS/Silicon Nanoscrew Photoresistor. ChemistrySelect, 2017, 2, 8577-8582.	1.5	5
23	Nanopillars on Unpolished Substrates and Their Application in Large-Area Solar Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 2012-2018.	0.9	0
24	Gas sensor based on ZnO film/silica pillars. Materials Research Express, 2016, 3, 125701.	1.6	4
25	Fabrication and Photovoltaic Effect of CdS/Silicon Nanopillars Heterojunction Solar Cell. ChemistrySelect, 2016, 1, 4901-4905.	1.5	5
26	Large-aperture prism-array lens for high-energy X-ray focusing. Journal of Synchrotron Radiation, 2016, 23, 1091-1096.	2.4	6
27	Fabrication and photosensitivity of CdS photoresistor on silica nanopillars substrate. Materials Science in Semiconductor Processing, 2016, 56, 217-221.	4.0	23
28	The Silicon Solar Cell with Selective Nanoscrew Pillars Fabricated by Cesium Chloride Self-Assembly Lithography and Dry Etching. Journal of Nanoscience and Nanotechnology, 2016, 16, 7515-7520.	0.9	0
29	Overcoming the Problem of Electrical Contact to Solar Cells Fabricated using Selectiveâ€Area Silicon Nanopillars by Cesium Chloride Selfâ€Assembly Lithography as Antireflective Layer. Energy Technology, 2016, 4, 298-303.	3.8	2
30	Sub-500  nm hard x ray focusing by compound long kinoform lenses. Applied Optics, 2016, 55, 38.	2.1	7
31	Fabrication and Field Emission Property of Ordered Silicon Nanotip Array Based on Controllable Self-Assembly of Cesium Chloride. Journal of Nanoscience and Nanotechnology, 2016, 16, 7715-7719.	0.9	0
32	Sidewall smoothing of micro-pore optics by ion beam etching. Surface and Coatings Technology, 2015, 278, 127-131.	4.8	4
33	Fabrication and Photovoltaic Characteristics of Silicon Nanoscrew and Nanohole Based Solar Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 236-240.	0.9	2
34	Fabrication of inverted pyramid structure by Cesium Chloride self-assembly lithography for silicon solar cell. Materials Science in Semiconductor Processing, 2015, 40, 44-49.	4.0	12
35	Photoelectric characteristics of silicon Pâ€"N junction with nanopillar texture: Analysis of X-ray photoelectron spectroscopy. Chinese Physics B, 2014, 23, 096101.	1.4	0
36	Fabrication of silicon nanotip arrays with high aspect ratio by cesium chloride self-assembly and dry etching. AIP Advances, 2014, 4, 031335.	1.3	4

#	Article	IF	CITATIONS
37	The performances of silicon solar cell with core–shell p-n junctions of micro-nano pillars fabricated by cesium chloride self-assembly and dry etching. Applied Physics A: Materials Science and Processing, 2014, 114, 1175-1179.	2.3	6
38	Fabrication of micro pore optics with smooth sidewall using X-ray lithography. Microsystem Technologies, 2014, 20, 2005-2010.	2.0	8
39	Fabrication of silicon nanopillar arrays by cesium chloride self-assembly and wet electrochemical etching for solar cell. Applied Surface Science, 2014, 289, 300-305.	6.1	13
40	The performance of silicon solar cell with selective pillars fabricated by Cesium Chloride self-assembly lithography and UV-lithography. Solar Energy, 2014, 105, 274-279.	6.1	6
41	Fabrication and antireflection properties of solar cells with pyramid–nanohole texture by caesium chloride lithography. Journal Physics D: Applied Physics, 2013, 46, 375302.	2.8	8
42	Fabrication of micro-nano surface texture by CsCl lithography with antireflection and photoelectronic properties for solar cells. Solar Energy Materials and Solar Cells, 2013, 108, 93-97.	6.2	36
43	The Fabrication of Silicon Nanopin with CsCl Nanoislands and Dry Etching for Field Emission. Key Engineering Materials, 2013, 562-565, 1224-1228.	0.4	0
44	Fabrication and Photovoltaic Properties of Silicon Solar Cells with Different Diameters and Heights of Nanopillars. Energy Technology, 2013, 1, 139-143.	3.8	9
45	Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping. Nanoscale Research Letters, 2013, 8, 544.	5.7	23
46	Fabrication and reflection properties of silicon nanopillars by cesium chloride self-assembly and dry etching. Applied Surface Science, 2012, 258, 8825-8830.	6.1	37
47	Multiform structures with silicon nanopillars by cesium chloride self-assembly and dry etching. Applied Surface Science, 2011, 257, 10489-10493.	6.1	5
48	New diamond anvil cell system forin situresistance measurement under extreme conditions. Review of Scientific Instruments, 2006, 77, 123902.	1.3	28
49	Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement. Applied Physics Letters, 2005, 86, 064104.	3.3	76
50	The Fabrication and Photoelectric Properties of the Nanopillar Arrays for Solar Cell. Materials Science Forum, 0, 694, 375-379.	0.3	2