Jean Raynaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3335861/publications.pdf Version: 2024-02-01

ΙΕΛΝ ΡΑΥΝΑΠΟ

#	Article	IF	CITATIONS
1	Harnessing Catalysis Selectivity and Isophorone Diisocyanate Asymmetry for Tailored Polyurethane Prepolymers and Networks. Macromolecules, 2022, 55, 3344-3352.	4.8	5
2	Energetic Nitrogenâ€Rich Polymers with a Tetrazeneâ€Based Backbone. Angewandte Chemie - International Edition, 2021, 60, 1578-1582.	13.8	15
3	Energetic Nitrogenâ€Rich Polymers with a Tetrazeneâ€Based Backbone. Angewandte Chemie, 2021, 133, 1602-1606.	2.0	3
4	Spectroscopic Signature and Structure of the Active Sites in Ziegler–Natta Polymerization Catalysts Revealed by Electron Paramagnetic Resonance. Journal of the American Chemical Society, 2021, 143, 9791-9797.	13.7	19
5	Ni(<scp>ii</scp>) and Co(<scp>ii</scp>) bis(acetylacetonato) complexes for alkene/vinylsilane silylation and silicone crosslinking. Catalysis Science and Technology, 2021, 11, 4849-4856.	4.1	1
6	Titanium-based phenoxy-imine catalyst for selective ethylene trimerization: effect of temperature on the activity, selectivity and properties of polymeric side products. Catalysis Science and Technology, 2020, 10, 1602-1608.	4.1	6
7	Ethylene free radical polymerization in supercritical ethylene/CO ₂ mixture. Polymer Chemistry, 2020, 11, 1001-1009.	3.9	3
8	Identifying competitive tin- or metal-free catalyst combinations to tailor polyurethane prepolymer and network properties. Polymer Chemistry, 2020, 11, 5725-5734.	3.9	11
9	Tunable Hydrogen Release from Amine–Boranes via their Insertion into Functional Polystyrenes. Angewandte Chemie - International Edition, 2019, 58, 15239-15243.	13.8	3
10	Tunable Hydrogen Release from Amine–Boranes via their Insertion into Functional Polystyrenes. Angewandte Chemie, 2019, 131, 15383-15387.	2.0	0
11	Activity Enhancement of MgCl2-supported Ziegler-Natta Catalysts by Lewis-acid Pre-treatment for Ethylene Polymerization. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1031-1038.	3.8	9
12	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie, 2019, 131, 12344-12350.	2.0	1
13	High Glassâ€Transition Temperature Polymer Networks Harnessing the Dynamic Ring Opening of Pinacol Boronates. Angewandte Chemie - International Edition, 2019, 58, 12216-12222.	13.8	24
14	Mechanistic Insight Into High-Spin Iron(I)-Catalyzed Butadiene Dimerization. Organometallics, 2016, 35, 2923-2929.	2.3	25
15	Active and Recyclable Polyethylene‧upported Iridiumâ€(N―Heterocyclic Carbene) Catalyst for Hydrogen/Deuterium Exchange Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2317-2323.	4.3	10
16	Development of silica-supported frustrated Lewis pairs: highly active transition metal-free catalysts for the Z-selective reduction of alkynes. Catalysis Science and Technology, 2016, 6, 882-889.	4.1	39
17	Polyboramines for Hydrogen Release: Polymers Containing Lewis Pairs in their Backbone. Angewandte Chemie - International Edition, 2015, 54, 15744-15749.	13.8	38
18	Iron atalyzed Polymerization of Isoprene and Other 1,3â€Dienes. Angewandte Chemie - International Edition, 2012, 51, 11805-11808.	13.8	100

Jean Raynaud

#	Article	IF	CITATIONS
19	Synthesis and structure of solution-stable one-dimensional palladium wires. Nature Chemistry, 2011, 3, 949-953.	13.6	115
20	No matter the order of monomer addition for the synthesis of well-defined block copolymers by sequential group transfer polymerization using N-heterocyclic carbenes as catalysts. Polymer Chemistry, 2011, 2, 1706.	3.9	61
21	<i>N</i> -Heterocyclic Carbene-Organocatalyzed Ring-Opening Polymerization of Ethylene Oxide in the Presence of Alcohols or Trimethylsilyl Nucleophiles as Chain Moderators for the Synthesis of α,ï‰-Heterodifunctionalized Poly(ethylene oxide)s. Macromolecules, 2010, 43, 2814-2823.	4.8	79
22	Expanding the Scope of Group Transfer Polymerization Using <i>N</i> -Heterocyclic Carbenes as Catalysts: Application to Miscellaneous (Meth)acrylic Monomers and Kinetic Investigations. Macromolecules, 2010, 43, 8853-8861.	4.8	64
23	Metal-free and solvent-free access to α,ï‰-heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chemical Communications, 2010, 46, 3203.	4.1	97
24	N-Heterocyclic Carbene-Induced Zwitterionic Ring-Opening Polymerization of Ethylene Oxide and Direct Synthesis of α,ï‰-Difunctionalized Poly(ethylene oxide)s and Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock	10 Jf. 50 5 13.7	42 Td (oxide
	131, 3201-3209.		
25	Group Transfer Polymerization of (Meth)acrylic Monomers Catalyzed by <i>N</i> -Heterocyclic Carbenes and Synthesis of All Acrylic Block Copolymers: Evidence for an Associative Mechanism. Macromolecules, 2009, 42, 5996-6005.	4.8	108

26Harnessing the Potential of Nâ€Heterocyclic Carbenes for the Rejuvenation of Groupâ€Transfer
Polymerization of (Meth)Acrylics. Angewandte Chemie - International Edition, 2008, 47, 5390-5393.13.8128