
Valentin A Gorodtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3335844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Out-of-Plane Tension of Thin Two-Layered Plates of Identically Oriented Hexagonal Crystals. Physical Mesomechanics, 2021, 24, 146-154.	1.0	2
2	Extreme values of Young's modulus of tetragonal crystals. Mechanics of Materials, 2021, 154, 103724.	1.7	3
3	Elastic Properties of Chiral Metallic Nanotubes Formed from Cubic Crystals. Physical Mesomechanics, 2021, 24, 464-474.	1.0	4
4	Stretching of chiral tubes obtained by rolling-up plates of cubic crystals with various orientations. Journal of Mechanics of Materials and Structures, 2021, 16, 139-157.	0.4	4
5	The Extreme Values of Young's Modulus and the Negative Poisson's Ratios of Rhombic Crystals. Crystals, 2021, 11, 863.	1.0	4
6	Effective elastic properties variability for two-layered plates of hexagonal and cubic crystals under longitudinal tension. Composite Structures, 2021, 274, 114300.	3.1	2
7	Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. Computational Materials Science, 2020, 172, 109355.	1.4	22
8	Auxetics among Materials with Cubic Anisotropy. Mechanics of Solids, 2020, 55, 461-474.	0.3	34
9	Modeling of the Mechanical Properties of Chiral Metallic Nanotubes. Physical Mesomechanics, 2020, 23, 477-486.	1.0	9
10	Chiral Fe nanotubes with both negative Poisson's ratio and Poynting's effect. Atomistic simulation. Journal of Physics Condensed Matter, 2019, 31, 475304.	0.7	8
11	Thin Homogeneous Two-Layered Plates of Cubic Crystals with Different Layer Orientation. Physical Mesomechanics, 2019, 22, 261-268.	1.0	16
12	Elastic properties of diamond-like phases based on carbon nanotubes. Diamond and Related Materials, 2019, 97, 107411.	1.8	27
13	Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals. Mechanics of Materials, 2019, 134, 1-8.	1.7	29
14	Tension of thin two-layered plates of hexagonal crystals. Composite Structures, 2019, 209, 453-459.	3.1	7
15	Elastic Properties of Fullerites and Diamondâ€Like Phases. Physica Status Solidi (B): Basic Research, 2019, 256, 1800049.	0.7	28
16	Variability of elastic properties of chiral monoclinic tubes under extension and torsion. Letters on Materials, 2019, 9, 202-206.	0.2	5
17	Chiral elasticity of nano/microtubes from hexagonal crystals. Acta Mechanica, 2018, 229, 2189-2201.	1.1	14
18	Three-layered plate exhibiting auxeticity based on stretching and bending modes. Composite Structures, 2018, 194, 643-651.	3.1	25

#	Article	IF	CITATIONS
19	Deformation behaviour of re-entrant carbon honeycomb structures. IOP Conference Series: Materials Science and Engineering, 2018, 447, 012035.	0.3	4
20	Variability of Young's modulus and Poisson's ratio of hexagonal crystals. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012019.	0.3	2
21	Longitudinal elastic tension of two-layered plates from isotropic auxetics-nonauxetics and cubic crystals. European Journal of Mechanics, A/Solids, 2017, 63, 122-127.	2.1	16
22	Equilibrium structures of carbon diamond-like clusters and their elastic properties. Physics of the Solid State, 2017, 59, 820-828.	0.2	22
23	Deformation of Spherical Inclusion in an Elastic Body with Account for Influence of Interface Considered as Infinitesimal Layer with Abnormal Properties. Advanced Structured Materials, 2017, , 163-169.	0.3	Ο
24	Two‣ayered Tubes from Cubic Crystals: Auxetic Tubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1600815.	0.7	18
25	Extreme values of the shear modulus for hexagonal crystals. Scripta Materialia, 2017, 140, 55-58.	2.6	11
26	Equilibrium diamondâ€like carbon nanostructures with cubic anisotropy: Elastic properties. Physica Status Solidi (B): Basic Research, 2016, 253, 1295-1302.	0.7	37
27	Torsion of cylindrically anisotropic nano/microtubes from seven-constant tetragonal crystals. Poynting's effect. Physical Mesomechanics, 2016, 19, 349-354.	1.0	7
28	Two-layer tubes from cubic crystals. Doklady Physics, 2016, 61, 604-610.	0.2	7
29	Auxeticity in nano/microtubes produced from orthorhombic crystals. Smart Materials and Structures, 2016, 25, 054006.	1.8	17
30	Poynting's effect of cylindrically anisotropic nano/microtubes. Physical Mesomechanics, 2016, 19, 229-238.	1.0	8
31	The elastic properties of hexagonal auxetics under pressure. Physica Status Solidi (B): Basic Research, 2016, 253, 1261-1269.	0.7	18
32	Mechanical characteristics for seven-constant rhombohedral crystals and their nano/microtubes. Letters on Materials, 2016, 6, 93-97.	0.2	14
33	Torsion of cylindrically anisotropic nano/microtubes of the cubic crystals obtained by rolling the crystal planes (011). Letters on Materials, 2016, 6, 249-252.	0.2	5
34	Negative Poisson's ratio for sixâ€constant tetragonal nano/microtubes. Physica Status Solidi (B): Basic Research, 2015, 252, 1580-1586.	0.7	17
35	Linear poynting's effect at torsion and extension of curvilinearly anisotropic tubes. Doklady Physics, 2015, 60, 396-399.	0.2	5
36	Reply to "Comment on â€~A Compact Analytic Model of the Strain Field Induced by Through ilicon Viasâ€â€™. IEEE Transactions on Electron Devices, 2015, 62, 3106-3106.	1.6	0

#	Article	IF	CITATIONS
37	Young's modulus and Poisson's ratio for seven-constant tetragonal crystals and nano/microtubes. Physical Mesomechanics, 2015, 18, 213-222.	1.0	23
38	Auxetics among 6-constant tetragonal crystals. Letters on Materials, 2015, 5, 409-413.	0.2	24
39	On surface elasticity theory for plane interfaces. Physical Mesomechanics, 2014, 17, 30-38.	1.0	3
40	Rayleigh and Love surface waves in isotropic media with negative Poisson's ratio. Mechanics of Solids, 2014, 49, 422-434.	0.3	16
41	Negative Poisson's ratio for cubic crystals and nano/microtubes. Physical Mesomechanics, 2014, 17, 97-115.	1.0	46
42	On the Modeling of Surface and Interface Elastic Effects in Case of Eigenstrains. Advanced Structured Materials, 2013, , 167-180.	0.3	7
43	Classification of cubic auxetics. Physica Status Solidi (B): Basic Research, 2013, 250, 2038-2043.	0.7	19
44	Small Wave – Vortex Disturbances in Stratified Fluid. Procedia IUTAM, 2013, 8, 111-118.	1.2	1
45	Young's moduli and Poisson's ratios of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Doklady Physics, 2013, 58, 400-404.	0.2	12
46	Modeling and Optimization of Edge Dislocation Stressors. IEEE Electron Device Letters, 2013, 34, 948-950.	2.2	3
47	Average Poisson's ratio for crystals. Hexagonal auxetics. Letters on Materials, 2013, 3, 7-11.	0.2	7
48	A Compact Analytic Model of the Strain Field Induced by Through Silicon Vias. IEEE Transactions on Electron Devices, 2012, 59, 777-782.	1.6	19
49	Relation of Poisson's ratio on average with Young's modulus. Auxetics on average. Doklady Physics, 2012, 57, 174-178.	0.2	12
50	Shear modulus of cubic crystals. Letters on Materials, 2012, 2, 21-24.	0.2	14
51	Variability of elastic properties of hexagonal auxetics. Doklady Physics, 2011, 56, 602-605.	0.2	13
52	Cubic auxetics. Doklady Physics, 2011, 56, 399-402.	0.2	21
53	Young's modulus of cubic auxetics. Letters on Materials, 2011, 1, 127-132.	0.2	15
54	Description of mechanical properties of carbon nanotubes. Tube wall thickness problem. Size effect. Part 1. Letters on Materials, 2011, 1, 185-189.	0.2	3

#	Article	IF	CITATIONS
55	Description of mechanical properties of carbon nanotubes. Tube wall thickness problem. Size effect. Part 2. Letters on Materials, 2011, 1, 190-193.	0.2	3
56	Simulation of stress-strain state in SiGe island heterostructures. Mechanics of Solids, 2010, 45, 312-323.	0.3	3
57	Auxetic mechanics of crystalline materials. Mechanics of Solids, 2010, 45, 529-545.	0.3	53
58	To the description of multi-layered nanotubes in models of cylindrically anisotropic elasticity. Physical Mesomechanics, 2010, 13, 12-20.	1.0	3
59	Effect of residual surface stress and surface elasticity on deformation of nanometer spherical inclusions in an elastic matrix. Physical Mesomechanics, 2010, 13, 318-328.	1.0	29
60	SiGe Quantum Rings by Ultra-high Vacuum Chemical Vapor Deposition. ECS Transactions, 2009, 16, 647-657.	0.3	2
61	On modeling the mechanical behavior of heterostructures with quantum dots. Russian Physics Journal, 2009, 52, 1177-1185.	0.2	1
62	Mesomechanics of multiwall carbon nanotubes and nanowhiskers. Physical Mesomechanics, 2009, 12, 38-53.	1.0	14
63	A mechanical model of the contact interaction between the atomic force microscope measuring element and a surface under investigation. Nanotechnologies in Russia, 2009, 4, 525-529.	0.7	1
64	About negativity of the Poisson's ratio for anisotropic materials. Doklady Physics, 2009, 54, 546-548.	0.2	9
65	Drag increment of internal waves generated by horizontally moving spheroid in supercritical regime. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 127-132.	1.5	Ο
66	Modeling of mechanical effects related to operation of atomic force microscopes. Nanotechnologies in Russia, 2008, 3, 378-390.	0.7	0
67	Wave drag of rapidly and horizontally moving Rankine ovoid in uniformly stratified fluid. Progress in Natural Science: Materials International, 2008, 18, 723-727.	1.8	4
68	Wave drag of an ellipsoid of revolution for the case of its rapid vertical motion in homogeneous stratified fluid. Doklady Physics, 2007, 52, 165-167.	0.2	1
69	Specific features of the strength of carbon whiskers. Technical Physics Letters, 2006, 32, 837-839.	0.2	5
70	Wave drag of an ellipsoid of revolution rapidly moving in a horizontal direction in a uniformly stratified fluid. Fluid Dynamics, 2006, 41, 415-423.	0.2	0
71	Variability of the elastic properties of multiwalled carbon nanotubes. Technical Physics Letters, 2005, 31, 18-20.	0.2	3
72	The anomalous diffusion of wave disturbances in hydrodynamic-type systems. Prikladnaya Matematika I Mekhanika, 2003, 67, 565-574.	0.4	0

5

#	Article	IF	CITATIONS
73	Finite speed of diffusion propagation in a two-component continuous medium. Prikladnaya Matematika I Mekhanika, 2001, 65, 353-356.	0.4	3
74	Stochastic Kadomtsev-Petviashvili equation. Journal of Experimental and Theoretical Physics, 2000, 90, 1105-1113.	0.2	0
75	Convective heat conduction and diffusion in one-dimensional hydrodynamics. Journal of Experimental and Theoretical Physics, 1999, 89, 872-879.	0.2	3
76	Radiative forces acting on point sources moving in a stratified fluid. Journal of Experimental and Theoretical Physics, 1997, 85, 276-284.	0.2	2
77	Precursor waves associated with the motion of sources of variable intensity in a stratified fluid. Fluid Dynamics, 1994, 29, 232-237.	0.2	0
78	Radiation of internal gravitational waves in the case of uniform motion of sources of variable amplitude (the plane problem). Journal of Applied Mechanics and Technical Physics, 1994, 34, 653-660.	0.1	0
79	Collapse of asymmetric perturbations in a stratified fluid. Fluid Dynamics, 1992, 26, 834-840.	0.2	0
80	Fast asymptotic form of the resistance of bodies in a waveguide layer of non-uniform fluids. Prikladnaya Matematika I Mekhanika, 1992, 56, 222-228.	0.4	0
81	High-speed asymptotic form of the wave resistance of bodies in a uniformly stratified liquid. Journal of Applied Mechanics and Technical Physics, 1991, 32, 331-337.	0.1	1
82	Spreading of a film of nonlinearly viscous liquid over a horizontal smooth solid surface. Journal of Engineering Physics, 1989, 57, 879-884.	0.0	12
83	Effect of homogeneous shear flow on small long-lived perturbations in a stratified fluid. Fluid Dynamics, 1988, 23, 237-244.	0.2	0
84	Diffusion spreading of localized hydrodynamic disturbances under the action of random forces. Prikladnaya Matematika I Mekhanika, 1988, 52, 165-170.	0.4	2
85	Laminated structures in the final stage in the decay of turbulence in stratified fluids. Fluid Dynamics, 1986, 20, 552-559.	0.2	0
86	Radiation of internal waves by periodically moving sources. Journal of Applied Mechanics and Technical Physics, 1984, 24, 521-526.	0.1	3
87	Evolution of axisymmetric vorticity distributions in an ideal incompressible stratified liquid. Prikladnaya Matematika I Mekhanika, 1983, 47, 479-484.	0.4	1
88	Study of internal waves in the case of rapid horizontal motion of cylinders and spheres. Fluid Dynamics, 1982, 17, 893-898.	0.2	15
89	Two-dimensional problem for internal waves generated by moving singular sources. Fluid Dynamics, 1981, 16, 219-224.	0.2	5
90	Radiation of internal waves during vertical motion of a body through a nonuniform liquid. Journal of Engineering Physics, 1980, 39, 1062-1065.	0.0	2

#	Article	IF	CITATIONS
91	Turbulent boundary layer of polymer solutions with a flow-retarding pressure gradient. Journal of Engineering Physics, 1979, 37, 1396-1401.	0.0	0
92	Similarity of undeveloped turbulent near-wall flows. Journal of Engineering Physics, 1979, 37, 1415-1418.	0.0	0
93	Similarity and weak closing relations for symmetric free turbulence. Fluid Dynamics, 1979, 14, 31-37.	0.2	14
94	Slow motions of a rigid sphere in incompressible viscoelastic fluids. Fluid Dynamics, 1977, 11, 183-189.	0.2	1
95	Slow motions of a liquid drop in a viscous liquid. Journal of Applied Mechanics and Technical Physics, 1976, 16, 865-868.	0.1	8
96	Turbulent flow of a polymer solution over a flat plate. Journal of Engineering Physics, 1976, 31, 1069-1074.	0.0	1
97	Slow nonstationary motions of viscoelastic liquids. Fluid Dynamics, 1976, 10, 711-716.	0.2	0
98	Model of the dynamic layer in the wall turbulence of a liquid with relaxation stress. Fluid Dynamics, 1975, 9, 35-46.	0.2	1
99	Logarithmic equations for the resistance of turbulent friction for a viscous liquid and polymer solutions. Journal of Engineering Physics, 1975, 29, 1403-1407.	0.0	0
100	Power laws of reduced turbulent friction for polymer solutions. Journal of Engineering Physics, 1975, 28, 275-282.	0.0	1
101	Turbulence with low heterogeneity and anisotropy. Journal of Engineering Physics, 1975, 28, 749-752.	0.0	1
102	On similarity laws for the developed turbulence of dilute polymer solutions. Journal of Engineering Physics, 1973, 25, 1467-1474.	0.0	2
103	Description of the reduction in turbulent friction drag in viscoelastic fluids. Journal of Engineering Physics, 1973, 25, 1559-1566.	0.0	3
104	Spectrum of developed turbulence of incompressible viscoelastic fluids. Fluid Dynamics, 1972, 7, 20-30.	0.2	0
105	Role of the scalar structure parameter in the description of the rheological behavior of elastico-viscous liquids. Polymer Mechanics, 1972, 5, 972-982.	0.1	0
106	Drag reduction in rough pipes by water-soluble polymer additives. Fluid Dynamics, 1972, 3, 117-118.	0.2	0
107	The degeneration of turbulence in a liquid with internal rotation. Journal of Applied Mechanics and Technical Physics, 1971, 8, 29-31.	0.1	0
108	Normal stresses in a viscoelastic medium with decaying turbulent motion. Journal of Applied Mechanics and Technical Physics, 1971, 8, 40-44.	0.1	0

#	Article	IF	CITATIONS
109	Final period of decay of turbulent motions of viscoelastic fluids. Journal of Applied Mechanics and Technical Physics, 1965, 6, 61-63.	0.1	3
110	Outâ€ofâ€plane tension of thin twoâ€layered plates of cubic crystals. Physica Status Solidi (B): Basic Research, 0, , 2100184.	0.7	4