Alexander Kuhn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3335347/publications.pdf

Version: 2024-02-01

204 papers 7,316 citations

45 h-index 75 g-index

222 all docs 222 docs citations

times ranked

222

6244 citing authors

#	Article	lF	Citations
1	Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem, 2022, 9, .	3.4	13
2	Bulk Electrocatalytic NADH Cofactor Regeneration with Bipolar Electrochemistry. Angewandte Chemie - International Edition, 2022, 61, e202111804.	13.8	14
3	Bulk electrocatalytic NADH cofactor regeneration with bipolar electrochemistry. Angewandte Chemie, 2022, 134, e202111804.	2.0	O
4	Recent progress in enzyme-driven micro/nanoswimmers: From fundamentals to potential applications. Current Opinion in Electrochemistry, 2022, 32, 100887.	4.8	9
5	Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. Chemical Science, 2022, 13, 2339-2346.	7.4	6
6	Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers. Carbon, 2022, 191, 439-447.	10.3	8
7	Bifunctional Pt/Au Janus electrocatalysts for simultaneous oxidation/reduction of furfural with bipolar electrochemistry. Chemical Communications, 2022, 58, 4312-4315.	4.1	11
8	Titelbild: Elektrokatalytische NADHâ€Cofaktorâ€Regenerierung in der Bulkphase mit bipolarer Elektrochemie (Angew. Chem. 3/2022). Angewandte Chemie, 2022, 134, .	2.0	0
9	Wireless light-emitting device for the determination of chirality in real samples. Electrochimica Acta, 2022, 421, 140494.	5. 2	12
10	Spatially Controlled CO ₂ Conversion Kinetics in Natural Leaves for Motion Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	2
11	Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. Journal of Physical Chemistry Letters, 2022, 13, 5538-5544.	4.6	9
12	Titelbild: Spatially Controlled CO ₂ Conversion Kinetics in Natural Leaves for Motion Generation (Angew. Chem. 34/2022). Angewandte Chemie, 2022, 134, .	2.0	0
13	Cover Picture: Spatially Controlled CO ₂ Conversion Kinetics in Natural Leaves for Motion Generation (Angew. Chem. Int. Ed. 34/2022). Angewandte Chemie - International Edition, 2022, 61,	13.8	1
14	Wireless <i>In Vivo</i> Biofuel Cell Monitoring. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2021, 5, 25-34.	3.4	7
15	Autonomous Chemotactic Lightâ€Emitting Swimmers with Trajectories of Increasing Complexity. Advanced Intelligent Systems, 2021, 3, 2000217.	6.1	5
16	Designing tubular conducting polymer actuators for wireless electropumping. Chemical Science, 2021, 12, 2071-2077.	7.4	12
17	Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nature Communications, 2021, 12, 1314.	12.8	47
18	Wireless Dual Stimuli Actuation of Dye Sensitized Conducting Polymer Hybrids. Advanced Functional Materials, 2021, 31, 2101171.	14.9	8

#	Article	IF	CITATIONS
19	Autonomous Chemotactic Lightâ€Emitting Swimmers with Trajectories of Increasing Complexity. Advanced Intelligent Systems, 2021, 3, 2170042.	6.1	O
20	Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. ChemPhysChem, 2021, 22, 1321-1325.	2.1	3
21	Bipolar (Bio)electroanalysis. Annual Review of Analytical Chemistry, 2021, 14, 65-86.	5.4	34
22	Bipolar Electrochemical Measurement of Enantiomeric Excess with Inherently Chiral Polymer Actuators. ACS Measurement Science Au, 2021, 1, 110-116.	4.4	17
23	Lorentz Force-Driven Autonomous Janus Swimmers. Journal of the American Chemical Society, 2021, 143, 12708-12714.	13.7	17
24	Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Ptâ^'lr Films Supported on Ni Foam. Chemistry - an Asian Journal, 2021, 16, 3345-3353.	3.3	9
25	Hybrid lightâ€emitting devices for the straightforward readout of chiral information. Chirality, 2021, 33, 875-882.	2.6	15
26	<i>In Situ</i> Spectroelectrochemical-Conductance Measurements as an Efficient Tool for the Evaluation of Charge Trapping in Conducting Polymers. Journal of Physical Chemistry Letters, 2021, 12, 10422-10428.	4.6	12
27	Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. Nature Chemistry, 2021, 13, 1241-1247.	13.6	24
28	Physical Chemistry, a Discipline in Its Golden Age. ChemPhysChem, 2020, 21, 7-8.	2.1	0
29	Encoding Chiral Molecular Information in Metal Structures. Chemistry - A European Journal, 2020, 26, 2993-3003.	3.3	18
30	Hexagonally Packed Macroporous Molecularly Imprinted Polymers for Chemosensing of Follicle-Stimulating Hormone Protein. ACS Sensors, 2020, 5, 118-126.	7.8	23
31	Electrochemistryâ€Based Lightâ€Emitting Mobile Systems. ChemElectroChem, 2020, 7, 4853-4862.	3.4	12
32	Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. ACS Applied Materials & Distribution (12), 36548-36557.	8.0	36
33	Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. Chemical Science, 2020, 11, 7438-7443.	7.4	19
34	Light and electric field induced unusual large-scale charge separation in hybrid semiconductor objects. Physical Chemistry Chemical Physics, 2020, 22, 22180-22184.	2.8	3
35	Highly defective carbon nanotubes for sensitive, low-cost and environmentally friendly electrochemical H2O2 sensors: Insight into carbon supports. Carbon, 2020, 170, 154-164.	10.3	13
36	Large Scale Chirality Transduction with Functional Molecular Materials. Chemistry of Materials, 2020, 32, 10663-10669.	6.7	14

#	Article	IF	CITATIONS
37	To be, or not to be…Electrochemist?. Journal of Solid State Electrochemistry, 2020, 24, 2113-2114.	2.5	2
38	Design of Potassiumâ€Selective Mixed Ion/Electron Conducting Polymers. Macromolecular Rapid Communications, 2020, 41, e2000134.	3.9	12
39	Sodiumâ€lon Selectivity Study of a Crownâ€Etherâ€Functionalized PEDOT Analog. ChemElectroChem, 2020, 7, 2826-2830.	3.4	10
40	Absolute Chiral Recognition with Hybrid Wireless Electrochemical Actuators. Analytical Chemistry, 2020, 92, 10042-10047.	6.5	31
41	Frontispiece: Encoding Chiral Molecular Information in Metal Structures. Chemistry - A European Journal, 2020, 26, .	3.3	0
42	Oscillatory Lightâ€Emitting Biopolymer Based Janus Microswimmers. Advanced Materials Interfaces, 2020, 7, 1902094.	3.7	13
43	Remote Actuation of a Lightâ€Emitting Device Based on Magnetic Stirring and Wireless Electrochemistry. ChemPhysChem, 2020, 21, 600-604.	2.1	12
44	Chemo―and Magnetotaxis of Selfâ€Propelled Lightâ€Emitting Chemoâ€electronic Swimmers. Angewandte Chemie, 2020, 132, 7578-7583.	2.0	0
45	Chemo―and Magnetotaxis of Selfâ€Propelled Lightâ€Emitting Chemoâ€electronic Swimmers. Angewandte Chemie - International Edition, 2020, 59, 7508-7513.	13.8	17
46	Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23378-23387.	8.0	10
47	Enzymatic Glucose-Oxygen Biofuel Cells for Highly Efficient Interfacial Corrosion Protection. ACS Applied Energy Materials, 2020, 3, 4441-4448.	5.1	9
48	Wireless Enhanced Electrochemiluminescence at a Bipolar Microelectrode in a Solid-State Micropore. Journal of the Electrochemical Society, 2020, 167, 137509.	2.9	7
49	Chiral platinum–polypyrrole hybrid films as efficient enantioselective actuators. Chemical Communications, 2019, 55, 10956-10959.	4.1	29
50	Rational Design of Enzymeâ€Modified Electrodes for Optimized Bioelectrocatalytic Activity. ChemElectroChem, 2019, 6, 4980-4984.	3.4	16
51	Synthesis, Characterization, and Electrochemical Applications of Chiral Imprinted Mesoporous Ni Surfaces. Journal of the American Chemical Society, 2019, 141, 18870-18876.	13.7	45
52	Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5951-5960.	3.7	7
53	Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. Journal of Physical Chemistry Letters, 2019, 10, 5318-5324.	4.6	24
54	Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. Analytical Chemistry, 2019, 91, 8900-8907.	6.5	26

#	Article	IF	CITATIONS
55	Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Current Opinion in Electrochemistry, 2019, 16, 28-34.	4.8	28
56	Wireless Coupling of Conducting Polymer Actuators with Light Emission. ChemPhysChem, 2019, 20, 941-945.	2.1	22
57	Innenr $\tilde{A}^{1}\!\!/\!\!$ cktitelbild: Potential-Induced Fine-Tuning of the Enantioaffinity of Chiral Metal Phases (Angew. Chem. 11/2019). Angewandte Chemie, 2019, 131, 3689-3689.	2.0	0
58	Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9265-9276.	8.0	33
59	Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5834-5834.	3.7	2
60	6. Biochemical sensing based on bipolar electrochemistry. , 2019, , 101-120.		1
61	Optimal Thickness of a Porous Microâ€Electrode Operating a Single Redox Reaction. ChemElectroChem, 2019, 6, 173-180.	3.4	10
62	Wireless Addressing of Freestanding MoSe ₂ Macro- and Microparticles by Bipolar Electrochemistry. Journal of Physical Chemistry C, 2019, 123, 5647-5652.	3.1	12
63	Potentialâ€Induced Fineâ€Tuning of the Enantioaffinity of Chiral Metal Phases. Angewandte Chemie - International Edition, 2019, 58, 3471-3475.	13.8	35
64	Bipolar Conducting Polymer Crawlers Based on Triple Symmetry Breaking. Advanced Functional Materials, 2018, 28, 1705825.	14.9	47
65	Wireless Power Transfer Link for RFID Telemetry System Applied to Laboratory Rodent Monitoring. , 2018, , .		1
66	Potential Induced Fineâ€ŧuning the Enantioaffinity of Chiral Metal Phases. Angewandte Chemie, 2018, 131, 3509.	2.0	5
67	Highly Ordered Macroporous Poly-3,4- <i>ortho</i> -xylendioxythiophene Electrodes as a Sensitive Analytical Tool for Heavy Metal Quantification. Analytical Chemistry, 2018, 90, 11770-11774.	6.5	9
68	Wireless Electromechanical Readout of Chemical Information. Journal of the American Chemical Society, 2018, 140, 15501-15506.	13.7	30
69	Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On hip Gas Encapsulation. Small, 2018, 14, e1801599.	10.0	7
70	Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source. Nature Communications, 2018, 9, 3229.	12.8	13
71	Applications of Electrogenerated Chemiluminescence in Analytical Chemistry. , 2017, , 257-291.		6
72	Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochemistry Communications, 2017, 77, 10-13.	4.7	45

#	Article	IF	CITATIONS
73	Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosensors and Bioelectronics, 2017, 94, 155-161.	10.1	47
74	On-chip enzymatic microbiofuel cell-powered integrated circuits. Lab on A Chip, 2017, 17, 1761-1768.	6.0	15
75	Anisotropic Metal Deposition on TiO ₂ Particles by Electricâ€Fieldâ€Induced Charge Separation. Angewandte Chemie - International Edition, 2017, 56, 11431-11435.	13.8	37
76	Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. ChemPhysChem, 2017, 18, 2637-2642.	2.1	13
77	Bipolar Electrochemistry with Organic Single Crystals for Wireless Synthesis of Metal–Organic Janus Objects and Asymmetric Photovoltage Generation. Journal of Physical Chemistry C, 2017, 121, 12921-12927.	3.1	21
78	Capillaryâ€assisted bipolar electrochemistry: A focused mini review. Electrophoresis, 2017, 38, 2687-2694.	2.4	21
79	Highly Ordered Macroporous Electrodes. , 2017, , 143-206.		6
80	Low-Molecular-Weight Hydrogels as New Supramolecular Materials for Bioelectrochemical Interfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1093-1098.	8.0	21
81	Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. ChemPhysChem, 2017, 18, 2557-2557.	2.1	0
82	Wireless Light-Emitting Electrochemical Rotors. Journal of Physical Chemistry Letters, 2017, 8, 4930-4934.	4.6	19
83	Wireless Electrochemical Actuation of Conducting Polymers. Angewandte Chemie, 2017, 129, 14371-14374.	2.0	5
84	Wireless Electrochemical Actuation of Conducting Polymers. Angewandte Chemie - International Edition, 2017, 56, 14183-14186.	13.8	42
85	Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing <scp>I</scp> -arabitol chemosensor sensitivity and detectability. Journal of Materials Chemistry B, 2017, 5, 6292-6299.	5.8	12
86	Anisotropic Metal Deposition on TiO ₂ Particles by Electricâ€Fieldâ€Induced Charge Separation. Angewandte Chemie, 2017, 129, 11589-11593.	2.0	4
87	Innenrù⁄4cktitelbild: Anisotropic Metal Deposition on TiO ₂ Particles by Electricâ€Fieldâ€Induced Charge Separation (Angew. Chem. 38/2017). Angewandte Chemie, 2017, 129, 11813-11813.	2.0	0
88	Pulsed electroconversion for highly selective enantiomer synthesis. Nature Communications, 2017, 8, 2087.	12.8	44
89	Semi-Covalent Imprinting for Selective Protein Sensing at a Femtomolar Concentration Level. Proceedings (mdpi), $2017, 1, .$	0.2	0
90	Indirect bipolar electrodeposition of polymers for the controlled design of zinc microswimmers. Applied Materials Today, 2017, 9, 259-265.	4.3	20

#	Article	IF	Citations
91	Recent Advances in Bipolar Electrochemistry. , 2017, , 27-118.		6
92	Selective Functionalization of Graphene Peripheries by using Bipolar Electrochemistry. ChemElectroChem, 2016, 3, 372-377.	3.4	20
93	Bipolar Electrografting on the Inner Wall of Carbon Nanotubes. ChemElectroChem, 2016, 3, 410-414.	3.4	16
94	Singleâ€Step Screening of the Potential Dependence of Metal Layer Morphologies along Bipolar Electrodes. ChemElectroChem, 2016, 3, 387-391.	3.4	18
95	A Compelling Case for Bipolar Electrochemistry. ChemElectroChem, 2016, 3, 351-352.	3.4	30
96	Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. Analyst, The, 2016, 141, 4299-4304.	3.5	11
97	Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Analytical and Bioanalytical Chemistry, 2016, 408, 7003-7011.	3.7	73
98	Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence. Analytical Chemistry, 2016, 88, 6585-6592.	6.5	49
99	Electric fields for generating unconventional motion of small objects. Current Opinion in Colloid and Interface Science, 2016, 21, 57-64.	7.4	53
100	Miniaturized Electrochemical Device from Assembled Cylindrical Macroporous Gold Electrodes. ChemElectroChem, 2016, 3, 2031-2035.	3.4	11
101	Nanostructured Antimonyâ€Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials, 2016, 26, 6682-6692.	14.9	28
102	Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. Langmuir, 2016, 32, 12995-13002.	3.5	29
103	Asymmetric synthesis using chiral-encoded metal. Nature Communications, 2016, 7, 12678.	12.8	90
104	Dualâ€Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry. ChemElectroChem, 2016, 3, 404-409.	3.4	22
105	Elaboration of metal organic framework hybrid materials with hierarchical porosity by electrochemical deposition–dissolution. CrystEngComm, 2016, 18, 5095-5100.	2.6	17
106	Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol. Biosensors and Bioelectronics, 2016, 79, 627-635.	10.1	40
107	One-step preparation of bifunctionalized surfaces by bipolar electrografting. RSC Advances, 2016, 6, 3882-3887.	3.6	23
108	Enantioselective Recognition of DOPA by Mesoporous Platinum Imprinted with Mandelic Acid. Electroanalysis, 2015, 27, 2209-2213.	2.9	35

#	Article	IF	CITATIONS
109	Bottomâ€up Generation of Miniaturized Coaxial Double Electrodes with Tunable Porosity. Advanced Materials Interfaces, 2015, 2, 1500192.	3.7	17
110	3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chemical Science, 2015, 6, 4433-4437.	7.4	72
111	Generation of metal composition gradients by means of bipolar electrodeposition. Electrochimica Acta, 2015, 179, 276-281.	5.2	50
112	Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. Lab on A Chip, 2015, 15, 3880-3890.	6.0	28
113	Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry. Electrochemistry Communications, 2015, 50, 77-80.	4.7	39
114	Asymmetric Modification of TiO ₂ Nanofibers with Gold by Electricâ€Fieldâ€Assisted Photochemistry. ChemElectroChem, 2014, 1, 2048-2051.	3.4	20
115	Lighting Up Redox Propulsion with Luminol Electrogenerated Chemiluminescence. ChemElectroChem, 2014, 1, 95-98.	3.4	41
116	Enantioselective recognition at mesoporous chiral metal surfaces. Nature Communications, 2014, 5, 3325.	12.8	126
117	Siteâ€Selective Synthesis of Janusâ€type Metalâ€Organic Framework Composites. Angewandte Chemie - International Edition, 2014, 53, 4001-4005.	13.8	60
118	Asymmetrical modification of carbon microfibers by bipolar electrochemistry in acetonitrile. Electrochimica Acta, 2014, 116, 421-428.	5.2	21
119	Wireless Electrosampling of Heavy Metals for Stripping Analysis with Bismuth-Based Janus Particles. Analytical Chemistry, 2014, 86, 10515-10519.	6.5	15
120	Electropolymerization of Polypyrrole by Bipolar Electrochemistry in an Ionic Liquid. Langmuir, 2014, 30, 2973-2976.	3.5	27
121	Imaging Redox Activity at Bipolar Electrodes by Indirect Fluorescence Modulation. Analytical Chemistry, 2014, 86, 3708-3711.	6.5	55
122	Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chemical Communications, 2014, 50, 10202-10205.	4.1	71
123	Wireless powering of e -swimmers. Scientific Reports, 2014, 4, 6705.	3.3	50
124	Interest of the Solâ€Gel Approach for Multiscale Tailoring of Porous Bioelectrode Surfaces. Electroanalysis, 2013, 25, 621-629.	2.9	16
125	Design of a wireless electrochemical valve. Nanoscale, 2013, 5, 1305-1309.	5. 6	23
126	Capillary electrophoresis as a production tool for asymmetric microhybrids. Electrophoresis, 2013, 34, 1985-1990.	2.4	10

#	Article	IF	CITATIONS
127	Wireless Electrografting of Molecular Layers for Janus Particle Synthesis. Chemistry - A European Journal, 2013, 19, 1577-1580.	3.3	31
128	Chemiluminescence from Asymmetric Inorganic Surface Layers Generated by Bipolar Electrochemistry. ChemPhysChem, 2013, 14, 2089-2093.	2.1	15
129	Enhanced hydrogen peroxide sensing based on Prussian Blue modified macroporous microelectrodes. Electrochemistry Communications, 2013, 29, 78-80.	4.7	45
130	Hierarchical Macroâ€mesoporous Pt Deposits on Gold Microwires for Efficient Methanol Oxidation. Electroanalysis, 2013, 25, 888-894.	2.9	7
131	Bipolar Electrochemistry: From Materials Science to Motion and Beyond. Accounts of Chemical Research, 2013, 46, 2513-2523.	15.6	325
132	Electrokinetic Assembly of One-Dimensional Nanoparticle Chains with Cucurbit[7]uril Controlled Subnanometer Junctions. Nano Letters, 2013, 13, 6016-6022.	9.1	36
133	Guest Editorial: Bioelectrochemistry and Electroanalytical Chemistry in France. Electroanalysis, 2013, 25, 585-585.	2.9	0
134	Introducing a well-ordered volume porosity in 3-dimensional gold microcantilevers. Applied Physics Letters, 2013, 102, 053501.	3.3	6
135	Indirect Bipolar Electrodeposition. Journal of the American Chemical Society, 2012, 134, 20033-20036.	13.7	86
136	Lightâ€Emitting Electrochemical "Swimmers― Angewandte Chemie - International Edition, 2012, 51, 11284-11288.	13.8	91
137	Site Selective Generation of Sol–Gel Deposits in Layered Bimetallic Macroporous Electrode Architectures. Langmuir, 2012, 28, 2323-2326.	3. 5	11
138	Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. Journal of Neurophysiology, 2012, 108, 1793-1803.	1.8	54
139	Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22, 15457.	6.7	121
140	Controlled Orientation of Asymmetric Copper Deposits on Carbon Microobjects by Bipolar Electrochemistry. Journal of Physical Chemistry C, 2012, 116, 22021-22027.	3.1	42
141	Bipolar electrochemistry for cargo-lifting in fluid channels. Lab on A Chip, 2012, 12, 1967.	6.0	55
142	Direct Visualization of Symmetry Breaking During Janus Nanoparticle Formation. Small, 2012, 8, 2698-2703.	10.0	18
143	True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry. Advanced Materials, 2012, 24, 5111-5116.	21.0	170
144	Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. Journal of Physiology (Paris), 2012, 106, 137-145.	2.1	54

#	Article	IF	CITATIONS
145	Engineering of Complex Macroporous Materials Through Controlled Electrodeposition in Colloidal Superstructures. Advanced Functional Materials, 2012, 22, 538-545.	14.9	50
146	Macroporous Ruthenium Oxide Electrodes for Electrochemical Applications. ECS Transactions, 2011, 33, 19-25.	0.5	5
147	Versatile Procedure for Synthesis of Janus-Type Carbon Tubes. Chemistry of Materials, 2011, 23, 2595-2599.	6.7	67
148	Electric field-induced chemical locomotion of conducting objects. Nature Communications, 2011, 2, 535.	12.8	384
149	Multiscale-Tailored Bioelectrode Surfaces for Optimized Catalytic Conversion Efficiency. Langmuir, 2011, 27, 12737-12744.	3.5	14
150	Electrochemically assisted deposition of sol–gel bio-composite with co-immobilized dehydrogenase and diaphorase. Electrochimica Acta, 2011, 56, 9032-9040.	5.2	34
151	Shaping and exploring the micro- and nanoworld using bipolar electrochemistry. Analytical and Bioanalytical Chemistry, 2011, 400, 1691-1704.	3.7	94
152	Macroporous microelectrode arrays for measurements with reduced noise. Journal of Electroanalytical Chemistry, 2011, 656, 91-95.	3.8	10
153	Design of Catalytically Active Cylindrical and Macroporous Gold Microelectrodes. Advanced Functional Materials, 2011, 21, 691-698.	14.9	46
154	Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes. Electrochemistry Communications, 2011, 13, 138-142.	4.7	36
155	Porous Bismuth Film Electrodes for Signal Increase in Anodic Stripping Voltammetry. Electroanalysis, 2010, 22, 1524-1530.	2.9	25
156	Macroporous antimony film electrodes for stripping analysis of trace heavy metals. Electrochemistry Communications, 2010, 12, 114-117.	4.7	76
157	Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes. Physical Chemistry Chemical Physics, 2010, 12, 9993.	2.8	31
158	Propulsion of Microobjects by Dynamic Bipolar Self-Regeneration. Journal of the American Chemical Society, 2010, 132, 15918-15919.	13.7	166
159	Fabrication of a Macroporous Microwell Array for Surfaceâ€Enhanced Raman Scattering. Advanced Functional Materials, 2009, 19, 3129-3135.	14.9	46
160	Absolute Asymmetric Reduction Based on the Relative Orientation of Achiral Reactants. Angewandte Chemie - International Edition, 2009, 48, 6857-6860.	13.8	37
161	Multicomponent macroporous materials with a controlled architecture. Journal of Materials Chemistry, 2009, 19, 409-414.	6.7	12
162	Single-Crystalline Gold Nanoplates from a Commercial Gold Plating Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 2045-2050.	0.9	0

#	Article	IF	CITATIONS
163	Ordered porous thin films in electrochemical analysis. TrAC - Trends in Analytical Chemistry, 2008, 27, 593-603.	11.4	162
164	Controlled purification, solubilisation and cutting of carbon nanotubes using phosphomolybdic acid. Journal of Materials Chemistry, 2008, 18, 4056.	6.7	13
165	Dissymmetric Carbon Nanotubes by Bipolar Electrochemistry. Nano Letters, 2008, 8, 500-504.	9.1	116
166	Macroporous Ultramicroelectrodes for Improved Electroanalytical Measurements. Analytical Chemistry, 2007, 79, 533-539.	6.5	143
167	Carbon Nanotube Fiber Microelectrodes: Design, Characterization, and Optimization. Journal of Nanoscience and Nanotechnology, 2007, 7, 3373-3377.	0.9	16
168	Scanning Tunneling Microscopy of Electrode Surfaces Using Carbon Composite Tips. Electroanalysis, 2007, 19, 121-128.	2.9	10
169	3D-Ensembles of Gold Nanowires: Preparation, Characterization and Electroanalytical Peculiarities. Electroanalysis, 2007, 19, 227-236.	2.9	89
170	The 11th International Conference on Electroanalysis ESEAC 2006. Electroanalysis, 2007, 19, 117-119.	2.9	0
171	Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochemistry Communications, 2007, 9, 2121-2127.	4.7	60
172	Optimized carbon nanotube fiber microelectrodes as potential analytical tools. Analytical and Bioanalytical Chemistry, 2007, 389, 499-505.	3.7	35
173	Preparation and characterization of polyoxometalate-modified carbon nanosheets. Carbon, 2006, 44, 1942-1948.	10.3	40
174	Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochimica Acta, 2006, 51, 2373-2379.	5.2	101
175	Hierarchical self-assembly of all-organic photovoltaic devices. Tetrahedron, 2006, 62, 2050-2059.	1.9	74
176	Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. Journal of Solid State Electrochemistry, 2006, 10, 168-175.	2.5	47
177	Tailored Mesostructuring and Biofunctionalization of Gold for Increased Electroactivity. Angewandte Chemie - International Edition, 2006, 45, 1317-1321.	13.8	165
178	Bioelectrocatalysis with modified highly ordered macroporous electrodes. Journal of Electroanalytical Chemistry, 2005, 579, 181-187.	3.8	46
179	Enhanced Photovoltaic Response in Hydrogen-Bonded All-Organic Devices. Organic Letters, 2005, 7, 3409-3412.	4.6	124
180	Electrochemical Removal of Metal Cations from Wastewater Monitored by Differential Pulse Polarography. Journal of Chemical Education, 2004, 81, 255.	2.3	6

#	Article	IF	Citations
181	Topâ-'Down Approach for the Preparation of Colloidal Carbon Nanoparticles. Chemistry of Materials, 2004, 16, 2984-2986.	6.7	114
182	Electrocatalysis with monolayer modified highly organized macroporous electrodes. Electrochemistry Communications, 2003, 5, 747-751.	4.7	49
183	Spatial Control of Polyaniline Electrodeposition by Patterned Polyoxometalate Monolayers. Journal of the Electrochemical Society, 2003, 150, C351.	2.9	12
184	Ca2+ enhanced catalytic NADH oxidation: a coupled 31P-NMR and electrochemistry study. Physical Chemistry Chemical Physics, 2003, 5, 2082.	2.8	11
185	The effect of calcium ions on the electrocatalytic oxidation of NADH by poly(aniline)-poly(vinylsulfonate) and poly(aniline)-poly(styrenesulfonate) modified electrodes. Physical Chemistry Chemical Physics, 2003, 5, 588-593.	2.8	11
186	Research à la Mode Française: Facts and Fiction. Nachrichten Aus Der Chemie, 2002, 50, 597-600.	0.0	0
187	Comb and Dendrigraft Polystyrenes with Ferrocenyl Units at the Periphery:Â Synthesis and Electrochemical Properties. Macromolecules, 2002, 35, 8994-9000.	4.8	23
188	A Simple Student Experiment for Teaching Surface Electrochemistry: Adsorption of Polyoxometalate on Graphite Electrodes. Journal of Chemical Education, 2002, 79, 349.	2.3	39
189	Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline. Electrochemistry Communications, 2002, 4, 510-515.	4.7	103
190	Adsorption and catalytic activity of trinitro-fluorenone derivatives towards NADH oxidation on different electrode materials. Electrochemistry Communications, 2001, 3, 585-589.	4.7	31
191	Localized Electrodeposition by Patterned Redox-active Monolayers. ChemPhysChem, 2001, 2, 688-691.	2.1	4
192	Effect of Ca2+ on the Amperometric Determination of Dehydrogenase Substrates with Nitro-Fluorenone Modified Electrodes. Electroanalysis, 2001, 13, 770-774.	2.9	13
193	The effect of modification of carbon electrodes with hybrid inorganic/organic monolayers on morphology and electrocatalytic activity of platinum deposits. Electrochimica Acta, 2001, 46, 4197-4204.	5.2	24
194	Adsorption of Monolayers of P2Mo18O626- and Deposition of Multiple Layers of Os(bpy)32+â^'P2Mo18O626- on Electrode Surfaces. Langmuir, 1996, 12, 5481-5488.	3.5	216
195	Effects of chirality during electrochemical oxidation of 2,3 butanediol stereoisomers. Journal of Electroanalytical Chemistry, 1996, 410, 243-246.	3.8	13
196	Diffusion-limited kinetics in thin-gap electroless deposition. Journal of Electroanalytical Chemistry, 1995, 397, 93-104.	3.8	30
197	Role of convection in thin-layer electrodeposition. Physical Review E, 1995, 51, 3444-3458.	2.1	146
198	Determination of Ionic Mobilities by Thin-Layer Electrodeposition. Journal of Chemical Education, 1994, 71, A273.	2.3	3

ALEXANDER KUHN

#	Article	IF	CITATIONS
199	Multiple relaxation pathways in photoexcited dimethylaminonitro- and dimethylaminocyano-stilbenes. Chemical Physics Letters, 1993, 208, 48-58.	2.6	133
200	Synthesis and electronic structure of permethylindenyl complexes of iron and cobalt. Organometallics, 1992, 11, 48-55.	2.3	77
201	Bipolar electrochemistry in the nanosciences. SPR Electrochemistry, 0, , 71-103.	0.7	7
202	Spatially Controlled CO2 Conversion Kinetics in Natural Leaves for Motion Generation. Angewandte Chemie, $0, , .$	2.0	0
203	Electropolymerizable Thiophene ${\bf \hat{a}} \in {\bf \hat{c}}$ Oligonucle otides for Electrode Functionalization. ACS Applied Materials & Samp; Interfaces, 0, , .	8.0	1
204	Siteâ€Selective Bipolar Electrodeposition of Gold Clusters on Graphene Oxide Microsheets at a 3D Air Liquid Interface. Advanced Materials Interfaces, 0, , 2200304.	3.7	3