List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3334848/publications.pdf Version: 2024-02-01

ANNE M ANDREWS

#	Article	IF	CITATIONS
1	Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Science Advances, 2022, 8, eabk0967.	10.3	118
2	Optogenetic Stimulation of Midbrain Dopamine Neurons Produces Striatal Serotonin Release. ACS Chemical Neuroscience, 2022, 13, 946-958.	3.5	2
3	Narrower Nanoribbon Biosensors Fabricated by Chemical Lift-off Lithography Show Higher Sensitivity. ACS Nano, 2021, 15, 904-915.	14.6	33
4	Divalent Cation Dependence Enhances Dopamine Aptamer Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 9425-9435.	8.0	42
5	Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Analytical and Bioanalytical Chemistry, 2021, 413, 6747-6767.	3.7	9
6	Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Science Advances, 2021, 7, eabj7422.	10.3	68
7	Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. , 2020, 2, 76-83.		14
8	Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Nano Letters, 2020, 20, 5982-5990.	9.1	47
9	Flexible Multiplexed In2O3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. IScience, 2020, 23, 101469.	4.1	45
10	Scalable Fabrication of Quasi-One-Dimensional Gold Nanoribbons for Plasmonic Sensing. Nano Letters, 2020, 20, 1747-1754.	9.1	19
11	Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sensors, 2019, 4, 3308-3317.	7.8	57
12	Editors' Favorites: Best of 2018. ACS Chemical Neuroscience, 2019, 10, 1-4.	3.5	0
13	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	14.6	1
14	<i>In Utero</i> Exposure to Citalopram Mitigates Maternal Stress Effects on Fetal Brain Development. ACS Chemical Neuroscience, 2019, 10, 3307-3317.	3.5	17
15	Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain. Journal of Neuroscience, 2019, 39, 4162-4178.	3.6	81
16	Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano, 2018, 12, 4761-4774.	14.6	57
17	Bad Behavior: Improving Reproducibility in Behavior Testing. ACS Chemical Neuroscience, 2018, 9, 1904-1906.	3.5	6
18	Editors' Favorites of 2017, ACS Chemical Neuroscience, 2018, 9, 1-4,	3.5	2

#	Article	IF	CITATIONS
19	Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018, 362, 319-324.	12.6	570
20	Small-Molecule Patterning via Prefunctionalized Alkanethiols. Chemistry of Materials, 2018, 30, 4017-4030.	6.7	14
21	Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates. ACS Applied Materials & Interfaces, 2018, 10, 23490-23500.	8.0	28
22	Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography. Nano Letters, 2018, 18, 5590-5595.	9.1	27
23	Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chemical Neuroscience, 2018, 9, 2408-2427.	3.5	50
24	Editors' Favorites of 2016. ACS Chemical Neuroscience, 2017, 8, 1-3.	3.5	1
25	Why Monitor Molecules in Neuroscience?. ACS Chemical Neuroscience, 2017, 8, 211-212.	3.5	8
26	Differentiating Siblings: The Case of Dopamine and Norepinephrine. ACS Chemical Neuroscience, 2017, 8, 218-220.	3.5	29
27	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	48.7	236
28	Polymer-Pen Chemical Lift-Off Lithography. Nano Letters, 2017, 17, 3302-3311.	9.1	39
29	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	14.6	104
30	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
31	High-Affinity Nucleic-Acid-Based Receptors for Steroids. ACS Chemical Biology, 2017, 12, 3103-3112.	3.4	82
32	Advancing Biocapture Substrates via Chemical Lift-Off Lithography. Chemistry of Materials, 2017, 29, 6829-6839.	6.7	24
33	Self-Collapse Lithography. Nano Letters, 2017, 17, 5035-5042.	9.1	19
34	Analyzing Spin Selectivity in DNA-Mediated Charge Transfer <i>via</i> Fluorescence Microscopy. ACS Nano, 2017, 11, 7516-7526.	14.6	82
35	Patterning of supported gold monolayers via chemical lift-off lithography. Beilstein Journal of Nanotechnology, 2017, 8, 2648-2661.	2.8	16
36	ADVANCED MICRODIALYSIS APPROACHES RESOLVE DIFFERENCES IN SEROTONIN HOMEOSTASIS AND SIGNALING. , 2017, , 119-140.		2

#	Article	IF	CITATIONS
37	Double-Sided Opportunities Using Chemical Lift-Off Lithography. Accounts of Chemical Research, 2016, 49, 1449-1457.	15.6	42
38	Neurochips Enable Nanoscale Devices for High-Resolution In Vivo Neurotransmitter Sensing. Neuropsychopharmacology, 2016, 41, 378-379.	5.4	5
39	A Model For Teaching Advanced Neuroscience Methods: A Student-Run Seminar to Increase Practical Understanding and Confidence. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2016, 15, A5-A10.	0.0	3
40	The Future of Monitoring Molecules. ACS Chemical Neuroscience, 2015, 6, 1-2.	3.5	4
41	Serotonin States and Social Anxiety. JAMA Psychiatry, 2015, 72, 845.	11.0	10
42	Prefrontal Cortex Vistas: A Serotonin Safari. ACS Chemical Neuroscience, 2015, 6, 936-937.	3.5	0
43	Fabrication of High-Performance Ultrathin In ₂ O ₃ Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano, 2015, 9, 4572-4582.	14.6	156
44	Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors. ACS Nano, 2015, 9, 12174-12181.	14.6	126
45	Controlled DNA Patterning by Chemical Lift-Off Lithography: Matrix Matters. ACS Nano, 2015, 9, 11439-11454.	14.6	42
46	Sex- and SERT-Mediated Differences in Stimulated Serotonin Revealed by Fast Microdialysis. ACS Chemical Neuroscience, 2015, 6, 1487-1501.	3.5	36
47	Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety. Neuropsychopharmacology, 2015, 40, 1456-1470.	5.4	49
48	Flow Cytometry to Determine Serotonin Transporter Function in Human Peripheral Blood Cells. Neuromethods, 2015, , 151-167.	0.3	0
49	Functional characterization of the S41Y (C2755A) polymorphism of tryptophan hydroxylase 2. Journal of Neurochemistry, 2014, 130, 748-758.	3.9	4
50	Chemistry and the BRAIN Initiative. Journal of the American Chemical Society, 2014, 136, 1-2.	13.7	364
51	2′-NH2-MPTP: A Serotonin and Norepinephrine Neurotoxin. , 2014, , 327-346.		0
52	Serotonin Uptake Is Largely Mediated by Platelets versus Lymphocytes in Peripheral Blood Cells. ACS Chemical Neuroscience, 2013, 4, 161-170.	3.5	47
53	From the bottom up: dimensional control and characterization in molecular monolayers. Chemical Society Reviews, 2013, 42, 2725-2745.	38.1	153
54	Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano, 2013, 7, 1850-1866.	14.6	323

#	Article	IF	CITATIONS
55	Physiologically Relevant Changes in Serotonin Resolved by Fast Microdialysis. ACS Chemical Neuroscience, 2013, 4, 790-798.	3.5	56
56	Small-Molecule Arrays for Sorting G-Protein-Coupled Receptors. Journal of Physical Chemistry C, 2013, 117, 22362-22368.	3.1	11
57	What's Old is New. ACS Chemical Neuroscience, 2013, 4, 1-2.	3.5	0
58	The BRAIN Initiative: Toward a Chemical Connectome. ACS Chemical Neuroscience, 2013, 4, 645-645.	3.5	16
59	The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Scientific Reports, 2013, 3, 1447.	3.3	75
60	Rethinking 5-HT _{1A} Receptors: Emerging Modes of Inhibitory Feedback of Relevance to Emotion-Related Behavior. ACS Chemical Neuroscience, 2013, 4, 72-83.	3.5	76
61	Common and rare alleles of the serotonin transporter gene, <i>SLC6A4</i> , associated with Tourette's disorder. Movement Disorders, 2013, 28, 1263-1270.	3.9	44
62	Electrochemical Techniques and Advances in Psychopharmacology. , 2013, , 1-6.		0
63	Differential serotonin transport is linked to the rh5-HTTLPR in peripheral blood cells. Translational Psychiatry, 2012, 2, e77-e77.	4.8	15
64	Visual Inspiration and Cover Art. ACS Chemical Neuroscience, 2012, 3, 492-492.	3.5	2
65	Subtractive Patterning via Chemical Lift-Off Lithography. Science, 2012, 337, 1517-1521.	12.6	139
66	Nano in the Brain: Nano-Neuroscience. ACS Nano, 2012, 6, 8463-8464.	14.6	25
67	Patterning small-molecule biocapture surfaces: microcontact insertion printing vs. photolithography. Chemical Communications, 2011, 47, 10641.	4.1	24
68	Head-to-Head Comparisons of Carbon Fiber Microelectrode Coatings for Sensitive and Selective Neurotransmitter Detection by Voltammetry. Analytical Chemistry, 2011, 83, 6658-6666.	6.5	87
69	Thin Gold Film-Assisted Fluorescence Spectroscopy for Biomolecule Sensing. Analytical Chemistry, 2011, 83, 7451-7456.	6.5	14
70	Comparison of Oligo(ethylene glycol)alkanethiols versus <i>n</i> -Alkanethiols: Self-Assembly, Insertion, and Functionalization. Journal of Physical Chemistry C, 2011, 115, 24778-24787.	3.1	15
71	Tuning Stamp Surface Energy for Soft Lithography of Polar Molecules to Fabricate Bioactive Smallâ€Molecule Microarrays. Small, 2011, 7, 1471-1479.	10.0	23
72	Biomarkers to Predict Antidepressant Response. Current Psychiatry Reports, 2010, 12, 553-562.	4.5	136

#	Article	IF	CITATIONS
73	γ-Aminobutyric Acid-Type A Receptor Deficits Cause Hypothalamic-Pituitary-Adrenal Axis Hyperactivity and Antidepressant Drug Sensitivity Reminiscent of Melancholic Forms of Depression. Biological Psychiatry, 2010, 68, 512-520.	1.3	124
74	Boron-Doped Diamond Microelectrodes Reveal Reduced Serotonin Uptake Rates in Lymphocytes from Adult Rhesus Monkeys Carrying the Short Allele of the <i>5-HTTLPR</i> . ACS Chemical Neuroscience, 2010, 1, 49-64.	3.5	55
75	Capillary Ultrahigh Performance Liquid Chromatography with Elevated Temperature for Sub-One Minute Separations of Basal Serotonin in Submicroliter Brain Microdialysate Samples. Analytical Chemistry, 2010, 82, 9611-9616.	6.5	52
76	Native Serotonin Membrane Receptors Recognize 5-Hydroxytryptophan-Functionalized Substrates: Enabling Small-Molecule Recognition. ACS Chemical Neuroscience, 2010, 1, 495-504.	3.5	34
77	Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions. Journal of Nanoparticle Research, 2008, 10, 1231-1240.	1.9	18
78	Biospecific Recognition of Tethered Small Molecules Diluted in Selfâ€Assembled Monolayers. Advanced Materials, 2008, 20, 164-167.	21.0	37
79	How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology, 2008, 55, 932-960.	4.1	199
80	Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. International Journal of Neuropsychopharmacology, 2008, 11, 79-92.	2.1	54
81	Microcontact insertion printing. Applied Physics Letters, 2007, 90, 063114.	3.3	50
82	Scanning Electron Microscopy of Nanoscale Chemical Patterns. ACS Nano, 2007, 1, 191-201.	14.6	73
83	Reduced brainâ€derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. Genes, Brain and Behavior, 2007, 6, 482-490.	2.2	60
84	A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology, 2007, 195, 147-166.	3.1	63
85	The neurotoxin 2′-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. Neuropharmacology, 2006, 50, 297-308.	4.1	12
86	Filtration disrupts synaptosomes during radiochemical analysis of serotonin uptake: Comparison with chronoamperometry in SERT knockout mice. Journal of Neuroscience Methods, 2006, 154, 245-255.	2.5	23
87	Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human α-synuclein in mice. Neurobiology of Disease, 2006, 21, 431-443.	4.4	113
88	A physical model of axonal damage due to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5262-5266.	7.1	12
89	Chronoamperometry To Determine Differential Reductions in Uptake in Brain Synaptosomes from Serotonin Transporter Knockout Mice. Analytical Chemistry, 2005, 77, 818-826.	6.5	46
90	Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology, 2005, 49, 798-810.	4.1	168

#	Article	IF	CITATIONS
91	Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. Journal of Neuroscience Methods, 2004, 140, 169-181.	2.5	256
92	Exploring the relationship between serotonin and brain-derived neurotrophic factor: analysis of BDNF protein and extraneuronal 5-HT in mice with reduced serotonin transporter or BDNF expression. Journal of Neuroscience Methods, 2004, 140, 81-92.	2.5	128
93	Late onset loss of hippocampal 5-HT and NE is accompanied by increases in BDNF protein expression in mice co-expressing mutant APP and PS1. Neurobiology of Disease, 2004, 16, 572-580.	4.4	40
94	Neuronal and Astroglial Responses to the Serotonin and Norepinephrine Neurotoxin: 1-Methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 923-931.	2.5	24
95	2′-NH2-MPTP [1-Methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine] Depletes Serotonin and Norepinephrine in Rats: A Comparison with 2′-CH3-MPTP [1-Methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydropyridine]. Journal of Pharmacology and Experimental Therapeutics. 2002. 303. 527-533.	2.5	10
96	GAP-43 Is Critical for Normal Development of the Serotonergic Innervation in Forebrain. Journal of Neuroscience, 2002, 22, 3543-3552.	3.6	93
97	Genetic perspectives on the serotonin transporter. Brain Research Bulletin, 2001, 56, 487-494.	3.0	193
98	Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5300-5305.	7.1	435
99	Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy). Neuroscience, 1999, 91, 1379-1387.	2.3	74
100	Altered Brain Serotonin Homeostasis and Locomotor Insensitivity to 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€) in Serotonin Transporter-Deficient Mice. Molecular Pharmacology, 1998, 53, 649-655.	2.3	659
101	Gene structure and 5′-flanking regulatory region of the murine serotonin transporter. Molecular Brain Research, 1997, 44, 286-292.	2.3	50
102	Cellular localization and expression of the serotonin transporter in mouse brain. Brain Research, 1997, 778, 338-345.	2.2	57
103	Differential Reinforcing Effects of Cocaine and GBR-12909: Biochemical Evidence for Divergent Neuroadaptive Changes in the Mesolimbic Dopaminergic System. Journal of Neuroscience, 1996, 16, 7416-7427.	3.6	78
104	Sustained Depletion of Cortical and Hippocampal Serotonin and Norepinephrine but Not Striatal Dopamine by 1-Methyl-4-(2'-Aminophenyl)-1,2,3,6-Tetrahydropyridine (2'-NH2-MPTP): A Comparative Study with 2'-CH3-MPTP and MPTP. Journal of Neurochemistry, 1993, 60, 1167-1170.	3.9	34
105	Fluoxetine and desipramine selectively attenuate 2′-NH2-MPTP-induced depletions in serotonin and norepinephrine. European Journal of Pharmacology, 1993, 250, 215-221.	3.5	15