
Leonid Goubergrits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3334768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare <scp>HVAD</scp> Rotary Blood Pumps. Artificial Organs, 2015, 39, 651-659.	1.9	149
2	Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge. Journal of Biomechanical Engineering, 2013, 135, 021016.	1.3	109
3	Numerical Estimation of Blood Damage in Artificial Organs. Artificial Organs, 2004, 28, 499-507.	1.9	108
4	MRIâ€based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta. Journal of Magnetic Resonance Imaging, 2015, 41, 909-916.	3.4	87
5	Flow simulation studies in coronary arteries—Impact of side-branches. Atherosclerosis, 2010, 213, 475-481.	0.8	83
6	Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge. Cardiovascular Engineering and Technology, 2018, 9, 544-564.	1.6	78
7	The Computational Fluid Dynamics Rupture Challenge 2013—Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms. Journal of Biomechanical Engineering, 2015, 137, 121008.	1.3	74
8	The Impact of MRI-based Inflow for the Hemodynamic Evaluation of Aortic Coarctation. Annals of Biomedical Engineering, 2013, 41, 2575-2587.	2.5	59
9	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation. Cardiovascular Engineering and Technology, 2018, 9, 565-581.	1.6	59
10	X-ray-based assessment of the three-dimensional velocity of the liquid phase in a bubble column. Experiments in Fluids, 2001, 31, 193-201.	2.4	58
11	Pressure Fields by Flow-Sensitive, 4D, Velocity-Encoded CMR in PatientsÂWith Aortic Coarctation. JACC: Cardiovascular Imaging, 2014, 7, 920-926.	5.3	57
12	Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of the Royal Society Interface, 2012, 9, 677-688.	3.4	55
13	CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography. International Journal of Cardiovascular Imaging, 2008, 24, 411-421.	1.5	48
14	Numerical modeling of blood damage: current status, challenges and future prospects. Expert Review of Medical Devices, 2006, 3, 527-531.	2.8	42
15	Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patientâ€&pecific MRIâ€Based CFD. Artificial Organs, 2018, 42, 49-57.	1.9	38
16	Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. Journal of Magnetic Resonance Imaging, 2015, 42, 1705-1712.	3.4	37
17	Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Medical Engineering and Physics, 2011, 33, 1193-1202.	1.7	33
18	Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity. Scientific Reports, 2020, 10, 3755.	3.3	32

#	Article	IF	CITATIONS
19	Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography. Annals of Biomedical Engineering, 2009, 37, 682-691.	2.5	31
20	X-ray based particle tracking velocimetry–a measurement technique for multi-phase flows and flows without optical access. Flow Measurement and Instrumentation, 2004, 15, 199-206.	2.0	30
21	MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study. Journal of Magnetic Resonance Imaging, 2017, 45, 139-146.	3.4	30
22	Is MRI-Based CFD Able to Improve Clinical Treatment of Coarctations of Aorta?. Annals of Biomedical Engineering, 2015, 43, 168-176.	2.5	29
23	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1795-1804.	2.8	29
24	Percutaneous devices: a review of applications, problems and possible solutions. Expert Review of Medical Devices, 2012, 9, 389-399.	2.8	28
25	In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils. American Journal of Neuroradiology, 2010, 31, 1521-1528.	2.4	27
26	Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients. Atherosclerosis, 2009, 202, 483-490.	0.8	24
27	Turbulence in Blood Damage Modeling. International Journal of Artificial Organs, 2016, 39, 160-165.	1.4	24
28	Towards a Computational Framework for Modeling the Impact of Aortic Coarctations Upon Left Ventricular Load. Frontiers in Physiology, 2018, 9, 538.	2.8	24
29	Geometry of the Human Common Carotid Artery. A Vessel Cast Study of 86 Specimens. Pathology Research and Practice, 2002, 198, 543-551.	2.3	23
30	Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e3147.	2.1	23
31	Estimation of wall shear stress in bypass grafts with computational fluid dynamics method. International Journal of Artificial Organs, 2001, 24, 145-151.	1.4	22
32	In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. BioMedical Engineering OnLine, 2006, 5, 39.	2.7	22
33	Uncertainty Quantification for Non-invasive Assessment of Pressure Drop Across a Coarctation of the Aorta Using CFD. Cardiovascular Engineering and Technology, 2018, 9, 582-596.	1.6	22
34	Evaluation of the Intranasal Flow Field through Computational Fluid Dynamics. Facial Plastic Surgery, 2013, 29, 093-098.	0.9	20
35	The Concept of Rhinorespiratory Homeostasis—A New Approach to Nasal Breathing. Facial Plastic Surgery, 2013, 29, 085-092.	0.9	20
36	Interactive virtual stent planning for the treatment of coarctation of the aorta. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 133-144.	2.8	20

#	Article	IF	CITATIONS
37	Variability of the Geometry of the Human Common Carotid Artery. A Vessel Cast Study of 31 Specimens. Pathology Research and Practice, 1998, 194, 597-602.	2.3	18
38	Mathematical Model of Platelet Deposition under Flow Conditions. International Journal of Artificial Organs, 2004, 27, 699-708.	1.4	18
39	Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters. Expert Review of Medical Devices, 2014, 11, 361-373.	2.8	18
40	Development of a modeling pipeline for the prediction of hemodynamic outcome after virtual mitral valve repair using image-based CFD. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1795-1805.	2.8	18
41	Numerical and experimental evaluation of platelet deposition to collagen coated surface at low shear rates. Journal of Biomechanics, 2013, 46, 430-436.	2.1	17
42	Extraction of open-state mitral valve geometry from CT volumes. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1741-1754.	2.8	17
43	Synthetic Database of Aortic Morphometry and Hemodynamics: Overcoming Medical Imaging Data Availability. IEEE Transactions on Medical Imaging, 2021, 40, 1438-1449.	8.9	17
44	Atherosclerosis and flow in carotid arteries with authentic geometries. Biorheology, 2002, 39, 519-24.	0.4	16
45	Non-dimensional modeling in flow simulation studies of coronary arteries including side-branches: A novel diagnostic tool in coronary artery disease. Atherosclerosis, 2011, 216, 277-282.	0.8	15
46	Effect of daptomycin and vancomycin on Staphylococcus epidermidis biofilms: An in vitro assessment using fluorescence in situ hybridization. PLoS ONE, 2019, 14, e0221786.	2.5	15
47	Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge. Medical Image Analysis, 2022, 77, 102333.	11.6	15
48	Reproducibility of Image-Based Analysis of Cerebral Aneurysm Geometry and Hemodynamics: An In-Vitro Study of Magnetic Resonance Imaging, Computed Tomography, and Three-Dimensional Rotational Angiography. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2013, 74, 294-302.	0.8	14
49	Model-Based Therapy Planning Allows Prediction of Haemodynamic Outcome after Aortic Valve Replacement. Scientific Reports, 2017, 7, 9897.	3.3	14
50	Impact of patient-specific LVOT inflow profiles on aortic valve prosthesis and ascending aorta hemodynamics. Journal of Computational Science, 2018, 24, 91-100.	2.9	14
51	Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modeling of Hemodynamics. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1815-1825.	6.3	14
52	Beyond Pressure Gradients: The Effects of Intervention on Heart Power in Aortic Coarctation. PLoS ONE, 2017, 12, e0168487.	2.5	14
53	Past and future of blood damage modelling in a view of translational research. International Journal of Artificial Organs, 2019, 42, 125-132.	1.4	13
54	Patientâ€specific requirements and clinical validation of MRIâ€based pressure mapping: A twoâ€center study in patients with aortic coarctation. Journal of Magnetic Resonance Imaging, 2019, 49, 81-89.	3.4	13

#	Article	IF	CITATIONS
55	Three-dimensional, three-component wall-PIV. Experiments in Fluids, 2010, 48, 983-997.	2.4	12
56	Simulation, identification and statistical variation in cardiovascular analysis (SISCA) – A software framework for multi-compartment lumped modeling. Computers in Biology and Medicine, 2017, 87, 104-123.	7.0	12
57	Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Healthy Subjects, Aortic Stenosis and Aortic Coarctation Patients–A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 43.	2.4	12
58	Atherosclerosis in theHuman Common Carotid Artery. A Morphometric Study of 31 Specimens. Pathology Research and Practice, 2001, 197, 803-809.	2.3	11
59	Particle image velocimetry of a flow at a vaulted wall. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 465-473.	1.8	11
60	CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases. Circulation, 2021, 144, 1926-1939.	1.6	11
61	Innovative developments of the heart valves designed for use in ventricular assist devices. Expert Review of Medical Devices, 2005, 2, 61-71.	2.8	10
62	Assessment of nasal resistance using computational fluid dynamics. Current Directions in Biomedical Engineering, 2016, 2, 617-621.	0.4	10
63	Surgical Aortic Valve Replacement: Are We Able toÂImprove Hemodynamic Outcome?. Biophysical Journal, 2019, 117, 2324-2336.	0.5	10
64	Assessment of hemodynamic responses to exercise in aortic coarctation using MRI-ergometry in combination with computational fluid dynamics. Scientific Reports, 2020, 10, 18894.	3.3	10
65	Novel Cardiac Assist Valve With a Purge Flow in the Valve Sinus. ASAIO Journal, 1998, 44, M642-M647.	1.6	9
66	Numerical Dye Washout Method as a Tool for Characterizing the Heart Valve Flow: Study of Three Standard Mechanical Heart Valves. ASAIO Journal, 2008, 54, 50-57.	1.6	9
67	User-dependent variability in mitral valve segmentation and its impact on CFD-computed hemodynamic parameters. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1687-1696.	2.8	9
68	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): uncertainty quantification of geometric rupture risk parameters. BioMedical Engineering OnLine, 2019, 18, 35.	2.7	9
69	Abnormal aortic flow profiles persist after aortic valve replacement in the majority of patients with aortic valve disease: how model-based personalized therapy planning could improve results. A pilot study approach. European Journal of Cardio-thoracic Surgery, 2020, 57, 133-141.	1.4	9
70	Estimation of wall shear stress in bypass grafts with computational fluid dynamics method. International Journal of Artificial Organs, 2001, 24, 145-51.	1.4	9
71	CT-Based Analysis of Left Ventricular Hemodynamics Using Statistical Shape Modeling and Computational Fluid Dynamics. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	9
72	Experimental and numerical dye washout flow visualization. Journal of Visualization, 2004, 7, 233-240.	1.8	8

#	Article	IF	CITATIONS
73	Investigation of human platelet adhesion under low shear conditions in a rotational flow chamber. Journal of Biorheology, 2011, 25, 64-70.	0.5	8
74	MRI as a tool for non-invasive vascular profiling: a pilot study in patients with aortic coarctation. Expert Review of Medical Devices, 2016, 13, 103-112.	2.8	8
75	Numerical Analysis of Nasal Breathing: A Pilot Study. Facial Plastic Surgery, 2017, 33, 388-395.	0.9	8
76	Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery. Facial Plastic Surgery, 2019, 35, 003-008.	0.9	8
77	CT-Based Simulation of Left Ventricular Hemodynamics: A Pilot Study in Mitral Regurgitation and Left Ventricle Aneurysm Patients. Frontiers in Cardiovascular Medicine, 2022, 9, 828556.	2.4	8
78	Xâ€rayâ€Based Flow Visualization and Measurement. Annals of the New York Academy of Sciences, 2002, 972, 247-253.	3.8	7
79	Visualization of a wall shear flow. Journal of Visualization, 2005, 8, 305-313.	1.8	7
80	Virtual downsizing for decision support in mitral valve repair. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 357-371.	2.8	7
81	Towards improving the accuracy of aortic transvalvular pressure gradients: rethinking Bernoulli. Medical and Biological Engineering and Computing, 2020, 58, 1667-1679.	2.8	7
82	Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis. Frontiers in Cardiovascular Medicine, 2021, 8, 706628.	2.4	7
83	Effects of Renal Denervation on Renal Artery Function in Humans: Preliminary Study. PLoS ONE, 2016, 11, e0150662.	2.5	7
84	Optimization and Investigation of a Novel Cardiac Assist Valve with a Purge Flow. International Journal of Artificial Organs, 2001, 24, 777-783.	1.4	6
85	Characterization of an Artificial Valve Flow Using the Numerical Dye Washout Visualization Technique: Application to the Monoleaflet Valve With Purged Flow. Artificial Organs, 2006, 30, 642-650.	1.9	6
86	Wall-PIV as a near wall flow validation tool for CFD: Application in a pathologic vessel enlargement (aneurysm). Journal of Visualization, 2009, 12, 241-250.	1.8	6
87	In Vitro Study of Cerebrospinal Fluid Dynamics in a Shaken Basal Cistern after Experimental Subarachnoid Hemorrhage. PLoS ONE, 2012, 7, e41677.	2.5	6
88	Surrogates for myocardial power and power efficiency in patients with aortic valve disease. Scientific Reports, 2019, 9, 16407.	3.3	6
89	Hemodynamic Modeling of Biological Aortic Valve Replacement Using Preoperative Data Only. Frontiers in Cardiovascular Medicine, 2020, 7, 593709.	2.4	6
90	Circulatory efficiency in patients with severe aortic valve stenosis before and after aortic valve replacement. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 15.	3.3	6

#	Article	IF	CITATIONS
91	Non-invasive CMR-Based Quantification of Myocardial Power and Efficiency Under Stress and Ischemic Conditions in Landrace Pigs. Frontiers in Cardiovascular Medicine, 2021, 8, 689255.	2.4	6
92	Triâ€Leaflet Valve Design With a Purge Flow for Heartâ€Assist Devices: An In Vitro Optimization Study. Artificial Organs, 2012, 36, 42-48.	1.9	5
93	Simulation of a Right Anterior Thoracotomy Access for Aortic Valve Replacement Using a 3D Printed Model. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2019, 14, 428-435.	0.9	5
94	Impact of predictive medicine on therapeutic decision making: a randomized controlled trial in congenital heart disease. Npj Digital Medicine, 2019, 2, 17.	10.9	5
95	The Healthy Nasal Cavity—Characteristics of Morphology and Related Airflow Based on a Statistical Shape Model Viewed from a Surgeon's Perspective. Facial Plastic Surgery, 2019, 35, 009-013.	0.9	5
96	Impact of valve morphology, hypertension and age on aortic wall properties in patients with coarctation: a two-centre cross-sectional study. BMJ Open, 2020, 10, e034853.	1.9	5
97	Choice and Impact of a Non-Newtonian Blood Model for Wall Shear Stress Profiling of Coronary Arteries. IFMBE Proceedings, 2008, , 111-114.	0.3	5
98	Flow Field of a Novel Implantable Valveless Counterpulsation Heart Assist Device. Annals of Biomedical Engineering, 2012, 40, 1982-1995.	2.5	4
99	Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1519-1529.	2.8	4
100	Investigation of Transport Phenomena Inside a Microcapsule. Annals of the New York Academy of Sciences, 2002, 972, 200-205.	3.8	3
101	Trileaflet Valve for VAD Use with Purged Sinus. Artificial Organs, 2003, 27, 586-591.	1.9	3
102	Hemodynamic in Aortic Coarctation Using MRI-Based Inflow Condition. Lecture Notes in Computer Science, 2014, , 65-73.	1.3	3
103	Experimental assessment of wall shear flow in models. Biorheology, 2002, 39, 485-9.	0.4	3
104	INVESTIGATION OF GEOMETRY AND ATHEROSCLEROSIS IN THE HUMAN CAROTID BIFURCATIONS. Journal of Mechanics in Medicine and Biology, 2003, 03, 31-48.	0.7	2
105	X-ray based measurements of the local solid phase content in a three-phase flow of a bubble column: statistical significance. Experiments in Fluids, 2004, 37, 923-928.	2.4	2
106	Numerical investigation of the impact of branching vessel boundary conditions on aortic hemodynamics. Current Directions in Biomedical Engineering, 2017, 3, 321-324.	0.4	2
107	Hodge decomposition of wall shear stress vector fields characterizing biological flows. Royal Society Open Science, 2019, 6, 181970.	2.4	2
108	Couette shearing device for the investigation of shear-induced damage of the primary hemostasis by left ventricular assist devices. International Journal of Artificial Organs, 2019, 42, 143-150.	1.4	2

#	Article	IF	CITATIONS
109	Cerebral Aneurysm Detection and Analysis Challenge 2020 (CADA). Lecture Notes in Computer Science, 2021, , 3-17.	1.3	2
110	Using position-based dynamics to simulate deformation in aortic valve replacement procedure. Current Directions in Biomedical Engineering, 2020, 6, .	0.4	2
111	Optimization and investigation of a novel cardiac assist valve with a purge flow. International Journal of Artificial Organs, 2001, 24, 777-83.	1.4	2
112	Injection of granular material. Journal of Visualization, 2006, 9, 31-38.	1.8	1
113	CFD Challenge: Solutions Using the Commercial Finite Volume Solver, Fluent. , 2012, , .		1
114	Biocompatibility Material Test for Cardiovascular Devices using Stagnation Point Flow. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	1
115	In vitro Study of Hemodynamic Treatment Improvement: Hunterian Ligation of a Fenestrated Basilar Artery Aneurysm after Coiling. International Journal of Artificial Organs, 2014, 37, 325-335.	1.4	1
116	3D Shape Analysis for Coarctation of the Aorta. Lecture Notes in Computer Science, 2018, , 73-77.	1.3	1
117	CMR-Based and Time-Shift Corrected Pressure Gradients Provide Good Agreement to Invasive Measurements in Aortic Coarctation. JACC: Cardiovascular Imaging, 2018, 11, 1725-1727.	5.3	1
118	Image-Based Computational Model Predicts Dobutamine-Induced Hemodynamic Changes in Patients With Aortic Coarctation. Circulation: Cardiovascular Imaging, 2021, 14, e011523.	2.6	1
119	X-ray Based Particle Tracking Velocimetry for Bubble Columns with High Void Fraction. Heat and Mass Transfer, 2004, , 129-138.	0.5	1
120	Flow separations in blood flow—its significance in the human circulation system and in artificial organs. WIT Transactions on State-of-the-art in Science and Engineering, 2006, , 505-528.	0.0	1
121	Unsupervised Learning and Statistical Shape Modeling of the Morphometry and Hemodynamics of Coarctation of the Aorta. Lecture Notes in Computer Science, 2020, , 776-785.	1.3	1
122	An orifice shape-based reduced order model of patient-specific mitral valve regurgitation. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1868-1884.	3.1	1
123	Investigation of the Attachment of Circulating Endothelial Cells to a Cell Probe: Combined Experimental and Numerical Study. Advanced Engineering Materials, 0, , 2101317.	3.5	1
124	Investigation of the Flow Performance of a Nutating Blood Pump by Computational Fluid Dynamics. Artificial Organs, 2002, 26, 392-396.	1.9	0
125	Spannungsoptik-Tomographie zur Messung der Scherung in StrĶmungen. TM Technisches Messen, 2012, 79, 304-309.	0.7	0
126	Assessment of wall-shear stress pre and post renal sympathetic nerve denervation in patients with resistant hypertension. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q60.	3.3	0

#	Article	IF	CITATIONS
127	Influence of right ventricular remodeling on ventricular function, flow and energetics in pulmonary regurgitation vs. stenosis: a 4-dimensional phase contrast MRI and admittance catheterization study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O95.	3.3	0
128	P2430Aortic shape synthesiser - understanding anatomical variations of the thoracic aorta. European Heart Journal, 2019, 40, .	2.2	0
129	Patientâ€specific requirements and clinical validation of MRIâ€based pressure mapping: A twoâ€center study in patients with aortic coarctation. Journal of Magnetic Resonance Imaging, 2019, 49, spcone.	3.4	0
130	Intracranial Aneurysm Rupture Prediction with Computational Fluid Dynamics Point Clouds. Lecture Notes in Computer Science, 2021, , 104-112.	1.3	0
131	CADA: Clinical Background and Motivation. Lecture Notes in Computer Science, 2021, , 21-28.	1.3	0
132	Enhanced oxygen transport in fish gills – flow measurements in a model. International Journal of Design and Nature and Ecodynamics, 2008, 3, 227-235.	0.5	0
133	Treatment of the Aortic Coarctation: Prediction of the Hemodynamic Impact. , 2013, , .		0
134	The Anterior Spreader Flap: A Minimally Invasive Alternative to the Auto Spreader Flap in the Treatment of Patients with Nasal Valve Dysfunction. International Journal of Otolaryngology and Head & Neck Surgery, 2014, 03, 184-189.	0.2	0
135	Impact of Aortic Valve Replacement on Flow Profiles in the Ascending Aorta. Thoracic and Cardiovascular Surgeon, 2018, 66, .	1.0	0
136	Intraventricular flow features and cardiac mechano-energetics after mitral valve interventions – feasibility of an isolated heart model. Current Directions in Biomedical Engineering, 2020, 6, .	0.4	0
137	Sensitivity analysis of FDA´s benchmark nozzle regarding in vitro imperfections - Do we need asymmetric CFD benchmarks?. Current Directions in Biomedical Engineering, 2020, 6, 78-81.	0.4	0
138	Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Patients With Heart Failure: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 718114.	2.4	0