Abdelbagi Ismail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3334766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442, 705-708.	27.8	1,332
2	Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annals of Botany, 2007, 99, 1161-1173.	2.9	565
3	Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Annals of Botany, 2009, 103, 151-160.	2.9	434
4	Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage. Plant Physiology, 2005, 139, 822-835.	4.8	429
5	Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice, 2010, 3, 148-160.	4.0	413
6	Chapter 3 Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. Advances in Agronomy, 2009, 102, 91-133.	5.2	402
7	Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annual Review of Plant Biology, 2017, 68, 405-434.	18.7	359
8	Chapter 2 Climate Change Affecting Rice Production. Advances in Agronomy, 2009, , 59-122.	5.2	349
9	Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 2007, 65, 547-570.	3.9	315
10	Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 2009, 103, 197-209.	2.9	284
11	Submergence Tolerant Rice: SUB1's Journey from Landrace to Modern Cultivar. Rice, 2010, 3, 138-147.	4.0	283
12	A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1, 15124.	9.3	263
13	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	3.6	243
14	Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?. BMC Plant Biology, 2013, 13, 32.	3.6	218
15	The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crops Research, 2013, 152, 83-93.	5.1	184
16	QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 2010, 172, 159-168.	1.2	176
17	Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Molecular Biology, 2007, 63, 609-623.	3.9	174
18	Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific OTL clusters. Nature Communications, 2016, 7, 10527	12.8	165

Abdelbagi Ismail

#	Article	IF	CITATIONS
19	Submergence tolerance in relation to variable floodwater conditions in rice. Environmental and Experimental Botany, 2009, 66, 425-434.	4.2	136
20	QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics, 2013, 126, 1357-1366.	3.6	118
21	Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of <i>Brassica napus</i> . Plant Physiology, 2016, 170, 1684-1698.	4.8	106
22	Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB PLANTS, 2012, 2012, pls019.	2.3	104
23	Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Annals of Botany, 2016, 117, 1083-1097.	2.9	102
24	Internal aeration of paddy field rice (<i><scp>O</scp>ryza sativa</i>) during complete submergence – importance of light and floodwater <scp>O</scp> ₂ . New Phytologist, 2013, 197, 1193-1203.	7.3	96
25	Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theoretical and Applied Genetics, 2010, 121, 1441-1453.	3.6	89
26	Response To Salinity In Rice: Comparative Effects Of Osmotic And Ionic Stresses. Plant Production Science, 2007, 10, 159-170.	2.0	85
27	NRT1.1-Related NH ₄ ⁺ Toxicity Is Associated with a Disturbed Balance between NH ₄ ⁺ Uptake and Assimilation. Plant Physiology, 2018, 178, 1473-1488.	4.8	72
28	The significance and functions of ethylene in flooding stress tolerance in plants. Environmental and Experimental Botany, 2020, 179, 104188.	4.2	71
29	Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica, 2015, 202, 259-268.	1.2	66
30	Gene Expression analysis associated with salt stress in a reciprocally crossed rice population. Scientific Reports, 2019, 9, 8249.	3.3	66
31	Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. Journal of Experimental Botany, 2014, 65, 3225-3233.	4.8	64
32	Drought Tolerant Rice for Ensuring Food Security in Eastern India. Sustainability, 2020, 12, 2214.	3.2	53
33	Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 2018, 220, 46-56.	5.1	52
34	Investigation of seedlingâ€stage salinity tolerance QTLs using backcross lines derived from <i>Oryza sativa</i> L. Pokkali. Plant Breeding, 2011, 130, 430-437.	1.9	51
35	Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Scientific Reports, 2017, 7, 46138.	3.3	46
36	Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India. Scientific Reports, 2017, 7, 7968.	3.3	46

Abdelbagi Ismail

#	Article	IF	CITATIONS
37	Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Security, 2017, 9, 711-722.	5.3	36
38	Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. Rice, 2019, 12, 63.	4.0	36
39	Rice Seed Germination Underwater: Morpho-Physiological Responses and the Bases of Differential Expression of Alcoholic Fermentation Enzymes. Frontiers in Plant Science, 2017, 8, 1857.	3.6	32
40	Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biology, 2009, 9, 65.	3.6	27
41	Marker Assisted Breeding. , 2009, , 451-469.		27
42	Increasing flooding tolerance in rice: combining tolerance of submergence and of stagnant flooding. Annals of Botany, 2019, 124, 1199-1209.	2.9	26
43	No yield penalty under favorable conditions paving the way for successful adoption of flood tolerant rice. Scientific Reports, 2018, 8, 9245.	3.3	26
44	Growth, productivity and grain quality of AG1 and AG2 QTLs introgression lines under flooding in direct-seeded rice system. Field Crops Research, 2020, 248, 107713.	5.1	23
45	Optimizing Sowing and Flooding Depth for Anaerobic Germination-Tolerant Genotypes to Enhance Crop Establishment, Early Growth, and Weed Management in Dry-Seeded Rice (Oryza sativa L.). Frontiers in Plant Science, 2018, 9, 1654.	3.6	21
46	Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Research, 2018, 229, 27-36.	5.1	18
47	Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana. Plant Science, 2019, 284, 57-66.	3.6	18
48	Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress. Journal of Plant Research, 2017, 130, 1071-1077.	2.4	16
49	Submergence tolerance in rice: resolving a pervasive quandary. New Phytologist, 2018, 218, 1298-1300.	7.3	13
50	Flood resilience loci <i>SUBMERGENCE 1</i> and <i>ANAEROBIC GERMINATION 1</i> interact in seedlings established underwater. Plant Direct, 2020, 4, e00240.	1.9	12
51	Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control. Functional Plant Biology, 2020, 47, 145.	2.1	11
52	Fundamental parenchyma cells are involved in Na+ and Cl– removal ability in rice leaf sheath. Functional Plant Biology, 2019, 46, 743.	2.1	6
53	Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy, 2020, 10, 2019.	3.0	6
54	Realizing the Potential of Coastal Flood-Prone Areas for Rice Production in West Bengal: Prospects and Challenges. , 2020, , 543-577.		4

#	Article	IF	CITATIONS
55	QTL mapping under salt stress in rice using a Kalarata–Azucena population. Euphytica, 2022, 218, .	1.2	3
56	Plant–environment interactions in Africa—Solutions to the challenges of environmental change. Plant-Environment Interactions, 2021, 2, 249-249.	1.5	0
57	Special Issue Second Call: Plantâ€environment interactions in Africa—Solutions to the challenges of environmental change. Plant-Environment Interactions, 2022, 3, 103-103.	1.5	0