
Francois Spitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3334534/publications.pdf Version: 2024-02-01

FRANCOIS SDITZ

#	Article	IF	CITATIONS
1	Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics, 2012, 13, 613-626.	7.7	1,726
2	Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature, 2016, 538, 265-269.	13.7	582
3	Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Reviews Genetics, 2013, 14, 125-138.	7.7	502
4	A Regulatory Archipelago Controls Hox Genes Transcription in Digits. Cell, 2011, 147, 1132-1145.	13.5	454
5	A Global Control Region Defines a Chromosomal Regulatory Landscape Containing the HoxD Cluster. Cell, 2003, 113, 405-417.	13.5	422
6	Functional and topological characteristics of mammalian regulatory domains. Genome Research, 2014, 24, 390-400.	2.4	402
7	A Switch Between Topological Domains Underlies <i>HoxD</i> Genes Collinearity in Mouse Limbs. Science, 2013, 340, 1234167.	6.0	391
8	The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances. Developmental Cell, 2016, 39, 529-543.	3.1	194
9	Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nature Genetics, 2011, 43, 379-386.	9.4	138
10	An Integrated Holo-Enhancer Unit Defines Tissue and Gene Specificity of the Fgf8 Regulatory Landscape. Developmental Cell, 2013, 24, 530-542.	3.1	132
11	Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes and Development, 2004, 18, 1553-1564.	2.7	131
12	Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nature Genetics, 2005, 37, 889-893.	9.4	129
13	Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes and Development, 2001, 15, 2209-2214.	2.7	128
14	Transgenic analysis of Hoxd gene regulation during digit development. Developmental Biology, 2007, 306, 847-859.	0.9	102
15	Uncoupling Time and Space in the Collinear Regulation of Hox Genes. PLoS Genetics, 2009, 5, e1000398.	1.5	80
16	Gene regulation at a distance: From remote enhancers to 3D regulatory ensembles. Seminars in Cell and Developmental Biology, 2016, 57, 57-67.	2.3	78
17	Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State. Developmental Cell, 2015, 32, 265-277.	3.1	76
18	A Discrete Transition Zone Organizes the Topological and Regulatory Autonomy of the Adjacent Tfap2c and Bmp7 Genes. PLoS Genetics, 2015, 11, e1004897.	1.5	56

FRANCOIS SPITZ

#	Article	IF	CITATIONS
19	Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nature Genetics, 2016, 48, 575-580.	9.4	54
20	The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Current Opinion in Genetics and Development, 2014, 27, 74-82.	1.5	48
21	A t(2;8) Balanced Translocation with Breakpoints Near the Human HOXD Complex Causes Mesomelic Dysplasia and Vertebral Defects. Genomics, 2002, 79, 493-498.	1.3	45
22	Chapter 6 Global Control Regions and Regulatory Landscapes in Vertebrate Development and Evolution. Advances in Genetics, 2008, 61, 175-205.	0.8	40
23	From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120358.	1.8	31
24	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	2.8	28
25	Gene regulation during development in the light of topologically associating domains. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 169-185.	5.9	25
26	Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy. Nature Communications, 2021, 12, 439.	5.8	25
27	A Systematic Enhancer Screen Using Lentivector Transgenesis Identifies Conserved and Non-Conserved Functional Elements at the Olig1 and Olig2 Locus. PLoS ONE, 2010, 5, e15741.	1.1	25
28	Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3. Mammalian Genome, 2008, 19, 272-278.	1.0	23
29	TRACER: a resource to study the regulatory architecture of the mouse genome. BMC Genomics, 2013, 14, 215.	1.2	15
30	DEVELOPMENT: The Art of Making a Joint. Science, 2001, 291, 1713-1714.	6.0	14
31	Model mice for 15q11–13 duplication syndrome exhibit late-onset obesity and altered lipid metabolism. Human Molecular Genetics, 2015, 24, 4559-4572.	1.4	13
32	Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nature Communications, 2021, 12, 4056.	5.8	8
33	Control of Vertebrate Hox Clusters by Remote and Global Cis-Acting Regulatory Sequences. Advances in Experimental Medicine and Biology, 2010, 689, 63-78.	0.8	6
34	Transcriptome profiling of white adipose tissue in a mouse model for 15q duplication syndrome. Genomics Data, 2015, 5, 394-396.	1.3	5