
Bruno Dlubak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333432/publications.pdf Version: 2024-02-01

RDUNO DUIRAK

#	Article	IF	CITATIONS
1	Solid-state memories based on ferroelectric tunnel junctions. Nature Nanotechnology, 2012, 7, 101-104.	31.5	518
2	Highly efficient spin transport in epitaxial graphene on SiC. Nature Physics, 2012, 8, 557-561.	16.7	392
3	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015, 2, 030202.	4.4	243
4	Kinetic Control of Catalytic CVD for High-Quality Graphene at Low Temperatures. ACS Nano, 2012, 6, 9996-10003.	14.6	159
5	The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. Journal of Physical Chemistry C, 2012, 116, 22492-22501.	3.1	155
6	Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics. ACS Nano, 2012, 6, 10930-10934.	14.6	138
7	Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Applied Physics Letters, 2016, 108, .	3.3	118
8	Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, 606, 663-673.	27.8	116
9	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254.	3.5	112
10	Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Applied Physics Letters, 2010, 96, .	3.3	109
11	Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes. ACS Nano, 2014, 8, 7890-7895.	14.6	109
12	Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources. Nano Letters, 2013, 13, 4624-4631.	9.1	104
13	Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction. Journal of the American Chemical Society, 2014, 136, 13698-13708.	13.7	95
14	Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Optics Letters, 2016, 41, 3281.	3.3	92
15	Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 4712-4718.	14.6	88
16	Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene?. Applied Physics Letters, 2010, 97, .	3.3	82
17	Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Applied Physics Letters, 2012, 100, .	3.3	78
18	Graphene-Based Ultrathin Flat Lenses. ACS Photonics, 2015, 2, 200-207.	6.6	70

BRUNO DLUBAK

#	Article	IF	CITATIONS
19	2D-MTJs: introducing 2D materials in magnetic tunnel junctions. Journal Physics D: Applied Physics, 2017, 50, 203002.	2.8	68
20	Protecting nickel with graphene spin-filtering membranes: A single layer is enough. Applied Physics Letters, 2015, 107, .	3.3	65
21	Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS ₂ . ACS Nano, 2019, 13, 14468-14476.	14.6	44
22	Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene. Nature Physics, 2018, 14, 25-29.	16.7	39
23	Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nature Communications, 2020, 11, 5670.	12.8	37
24	Stabilizing ultra-thin black phosphorus with <i>in-situ</i> -grown 1 nm-Al2O3 barrier. Applied Physics Letters, 2017, 111, .	3.3	35
25	Synthesis of emerging 2D layered magnetic materials. Nanoscale, 2021, 13, 2157-2180.	5.6	35
26	Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. ACS Nano, 2021, 15, 7279-7289.	14.6	28
27	Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene. Nano Letters, 2016, 16, 2988-2993.	9.1	26
28	Homogeneous pinhole free 1 nm Al2O3 tunnel barriers on graphene. Applied Physics Letters, 2012, 101, .	3.3	25
29	WS ₂ 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits. ACS Applied Nano Materials, 2020, 3, 7908-7916.	5.0	24
30	Visible Diffraction from Graphene and Its Application in Holograms. Advanced Optical Materials, 2013, 1, 869-874.	7.3	17
31	Anisotropic Magneto oulomb Properties of 2D–0D Heterostructure Single Electron Device. Advanced Materials, 2018, 30, e1802478.	21.0	17
32	A perpendicular graphene/ferromagnet electrode for spintronics. Applied Physics Letters, 2020, 116, .	3.3	17
33	Stabilizing a graphene platform toward discrete components. Applied Physics Letters, 2016, 109, 253110.	3.3	16
34	Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on MoS2 and Other Transition-Metal Dichalcogenides. Physical Review Applied, 2019, 12, .	3.8	13
35	Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform. Applied Physics Letters, 2019, 114, .	3.3	13
36	Analysis of basic processes inside the keyhole during deep penetration Nd-YAG cw laser welding. , 2006, , .		12

Bruno Dlubak

#	Article	IF	CITATIONS
37	Long-Range Propagation and Interference of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>d</mml:mi></mml:mrow> -wave Superconducting Pairs in Graphene. Physical Review Letters, 2020, 125, 087002.</mml:math 	7.8	12
38	0D/2D Heterostructures Vertical Single Electron Transistor. Advanced Functional Materials, 2021, 31, 2008255.	14.9	12
39	Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration. ACS Applied Electronic Materials, 2020, 2, 3508-3514.	4.3	11
40	Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Materials, 0, , .	4.4	11
41	Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/ <i>L</i> 1 ₀ -FePd Interface with a Robust and Perpendicular Orbital Moment. ACS Nano, 2022, 16, 4139-4151.	14.6	10
42	A Local Study of the Transport Mechanisms in MoS ₂ Layers for Magnetic Tunnel Junctions. ACS Applied Materials & Interfaces, 2018, 10, 30017-30021.	8.0	8
43	Superconducting Proximity Effect in <i>d</i> â€Wave Cuprate/Graphene Heterostructures. Annalen Der Physik, 2022, 534, .	2.4	8
44	Graphene nanoribbon based plasmonic Fresnel zone plate lenses. RSC Advances, 2017, 7, 16594-16601.	3.6	7
45	Wavelength-Selective Diffraction from Silica Thin-Film Gratings. ACS Photonics, 2017, 4, 2402-2409.	6.6	6
46	Building blocks and concepts for THz remote sensing and communications. , 2019, , .		3
47	A ferromagnetic spin source grown by atomic layer deposition. Applied Physics Letters, 2022, 120, .	3.3	3
48	Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. , 2016, , 681-706.		1
49	Organic–Inorganic Hybrid Interfaces for Spin Injection into Carbon Nanotubes and Graphene. Advanced Quantum Technologies, 2022, 5, .	3.9	1
50	Spin transport in graphene: Fundamental concepts and practical implications. , 2012, , .		0
51	Large‣caleâ€Compatible Stabilization of a 2D Semiconductor Platform toward Discrete Components. Advanced Electronic Materials, 2021, 7, 2001109.	5.1	0
52	Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. , 2015, , 1-21.		0
53	Synchrotron-like THz emitters based on corrugated graphene. , 2020, , .		0
54	X-ray magnetic dichroism and tunnel magneto-resistance study of the magnetic phase in epitaxial CrVO _x nanoclusters. Journal of Physics Condensed Matter, 2022, 34, 175801.	1.8	0