Rajendra Bhatia

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3333721/publications.pdf
Version: 2024-02-01

$1 \quad$ Variational principles for symplectic eigenvalues. Canadian Mathematical Bulletin, 2021, 64, 553-559. 5

2 A Schur-Horn theorem for symplectic eigenvalues. Linear Algebra and Its Applications, 2020, 599, 133-139.
0.9

6

Some inequalities for eigenvalues and symplectic eigenvalues of positive definite matrices.
International Journal of Mathematics, 2019, 30, 1950055.
$0.5 \quad 3$

Procrustes problems in Riemannian manifolds of positive definite matrices. Linear Algebra and Its
$0.9 \quad 5$
Applications, 2019, 563, 440-445.

Inequalities for the Wasserstein mean of positive definite matrices. Linear Algebra and Its Applications,
2019, 576, 108-123.
$0.9 \quad 17$

Strong convexity of sandwiched entropies and related optimization problems. Reviews in
Mathematical Physics, 2018, 30, 1850014.

Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer
Interfaces, 2017, 4, 155-174.
1.8

258

8 Positive linear maps and spreads of matrices-II. Linear Algebra and Its Applications, 2016, 491, 30-40.
0.9

8
$9 \quad$ Some norm inequalities for matrix means. Linear Algebra and Its Applications, 2016, 501, 112-122. 18

10 On symplectic eigenvalues of positive definite matrices. Journal of Mathematical Physics, 2015, 56, .
1.1

42

11 Inertia of the matrix $\$\left[\left(p_{-} i+p_{-} j\right)^{\wedge} r\right] \$$. Journal of Spectral Theory, 2015, 5, 71-87.
0.8

12

12 On some positive definite functions. Positivity, 2015, 19, 903-910.
0.7

7

13 Positivity properties of the matrix $\$ \$\left\{\operatorname{left}\left[(i+j)^{\wedge}\{i+j\}\right.\right.$ ight $\left.]\right\} \$ \$(i+j) i+j$. Archiv Der Mathematik, 2014, 103, 279-283.

14 Positive Linear Maps and Spreads of Matrices. American Mathematical Monthly, 2014, 121, 619.
0.3

Approximation problems in the Riemannian metric on positive definite matrices. Annals of Functional
$15 \quad \begin{aligned} & \text { Approximation problems in } \\ & \text { Analysis, 2014, 5, 118-126. }\end{aligned}$
$0.8 \quad 1$

The bipolar decomposition. Linear Algebra and Its Applications, 2013, 439, 3031-3037.
$0.9 \quad 4$

17 Monotonicity of the matrix geometric mean. Mathematische Annalen, 2012, 353, 1453-1467.
1.4

60
19 Min Matrices and Mean Matrices. Mathematical Intelligencer, 2011, 33, 22-28. 0.2 13
21 Positivity and conditional positivity of Loewner matrices. Positivity, 2010, 14, 421-430. 0.7 10
22 Loewner matrices and operator convexity. Mathematische Annalen, 2009, 344, 703-716. 1.4 26
overflow="scroll">mml:mrow mml:miA</mml:mi> mml:mo+</mml:mo>mml:mi B </mml:mi> </mml:mrow> </mml:math > and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" $0.9 \quad 15$
overflow="scroll" > mml:mrow mml:miA</mml:mi>mml:mo+</mml:mo><mml:mi 924 Higher order derivatives and perturbation bounds for determinants. Linear Algebra and Its18Applications, 2009, 431, 2102-2108.
0.21
25 A Conversation with S. R. S. Varadhan. Mathematical Intelligencer, 2008, 30, 24-42.0.954
The matrix arithmeticâ€"geometric mean inequality revisited. Linear Algebra and Its Applications, 2008, 428, 2177-2191.
$0.3 \quad 12$
$27 \quad$ Infinite Divisibility of GCD Matrices. American Mathematical Monthly, 2008, 115, 551-553.
28 Mean matrices and infinite divisibility. Linear Algebra and Its Applications, 2007, 424, 36-54. 0.9 40
29 Spectral variation, normal matrices, and finsler geometry. Mathematical Intelligencer, 2007, 29, 41-46. 0.2 1
30 Positivity Preserving Hadamard Matrix Functions. Positivity, 2007, 11, 583-588.0.79
31 Infinitely Divisible Matrices. American Mathematical Monthly, 2006, 113, 221-235. 0.3 55Interpolating the arithmeticâe"geometric mean inequality and its operator version. Linear Algebra andIts Applications, 2006, 413, 355-363.Riemannian geometry and matrix geometric means. Linear Algebra and Its Applications, 2006, 413,0.9179594-618.Noncommutative geometric means. Mathematical Intelligencer, 2006, 28, 32-39.0.224
Applications, 2005, 27, 103-114.1.413

37	On the exponential metric increasing property. Linear Algebra and Its Applications, 2003, 375, 211-220.	0.9
Higher Order Logarithmic Derivatives of Matrices in the Spectral Norm. SIAM Journal on Matrix Analysis and Applications, 2003, 25, 662-668.	1.4	58

$39 \quad$ Pinchings and Norms of Scaled Triangular Matrices. Linear and Multilinear Algebra, 2002, 50, 15-21. $1.0 \quad 11$
$40 \quad$ Variation of induced linear operators. Linear Algebra and Its Applications, 2002, 341, 391-402.

41	Linear Algebra to Quantum Cohomology: The Story of Alfred Horn's Inequalities. American Mathematical Monthly, 2001, 108, 289-318.	0.3	32

44 A Better Bound on the Variance. American Mathematical Monthly, 2000, 107, 353-357.

45	Pinching, Trimming, Truncating, and Averaging of Matrices. American Mathematical Monthly, 2000, 107, $602-608$.	0.3

50 Some inequalities for commutators and an application to spectral variation. II. Linear and Multilinear

Some Inequalities for Norms of Commutators. SIAM Journal on Matrix Analysis and Applications, 1997,
$55 \quad$ Spectral variation bounds for diagonalisable matrices. Aequationes Mathematicae, 1997, 54, 102-107. 1

56 A note on the Lyapunov equation. Linear Algebra and Its Applications, 1997, 259, 71-76.
0.9

19
$57 \quad$ On perturbations of matrix pencils with real spectra. II. Mathematics of Computation, 1996, 65, 637-646. $2.1 \quad 12$

58 Distance between Hermitian operators in Schatten classes. Proceedings of the Edinburgh
Mathematical Society, 1996, 39, 377-380.

59 Variation of the Unitary Part of a Matrix. SIAM Journal on Matrix Analysis and Applications, 1994, 15,
1007-1014.
1.4

60 A generalization of the Hoffman-Wielandt theorem. Linear Algebra and Its Applications, 1993, 179, 11-17.
$0.9 \quad 9$
0.3

3

More Matrix Forms of the Arithmetic-Geometric Mean Inequality. SIAM Journal on Matrix Analysis and
Applications, 1993, 14, 132-136.
1.4

135

A Henrici theorem for joint spectra of commuting matrices. Proceedings of the American
Mathematical Society, 1993, 118, 5-5.
$0.8 \quad 6$

63 Approximation by positive operators. Linear Algebra and lts Applications, 1992, 161, 1-9.
0.9

8

64 Review of matrix perturbation theory. Linear Algebra and Its Applications, 1992, 160, 255-259.
0.9

1

65 Normal approximants to binormal operators. Linear Algebra and Its Applications, 1991, 147, 169-179.
0.9

6

66 Some inequalities for communtators and an application to spectral variation. Aequationes Mathematicae, 1991, 41, 70-78.
0.8

16

Norm inequalities for partitioned operators and an application. Mathematische Annalen, 1990, 287,
719-726.

68 On the variation of permanents. Linear and Multilinear Algebra, 1990, 27, 105-110.
1.0

2

On the Singular Values of a Product of Operators. SIAM Journal on Matrix Analysis and Applications,
$1990,11,272-277$.

An extremal problem in Fourier analysis with applications to operator theory. Journal of Functional Analysis, 1989, 82, 138-150.
73 Some inequalities for norm ideals. Communications in Mathematical Physics, 1987, 111, 33-39. 2.2 31
The distance between the eigenvalues of Hermitian matrices. Proceedings of the American Mathematical Society, 1986, 96, 41-41.

Short normal paths and spectral variation. Proceedings of the American Mathematical Society, 1985,

