Daniela Calvetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333354/publications.pdf

Version: 2024-02-01

$$
\begin{aligned}
& \text { Overcomplete representation in a hierarchical Bayesian framework. Inverse Problems and Imaging, } \\
& 2022,16,19 \text {. }
\end{aligned}
$$

2 Brain Energy Metabolism. , 2022, , 540-558.
0

Modeling Epidemic Spread among a Commuting Population Using Transport Schemes. Mathematics, 2021, 9, 1861.

Mining the Mind: Linear Discriminant Analysis of MEG Source Reconstruction Time Series Supports
4 Dynamic Changes in Deep Brain Regions During Meditation Sessions. Brain Topography, 2021, 34, 840-862.
$5 \quad$ Bayesian particle filter algorithm for learning epidemic dynamics. Inverse Problems, 2021, 37, 115008.
$1.0 \quad 9$

6 Sparse reconstructions from few noisy data: analysis of hierarchical Bayesian models with generalized gamma hyperpriors. Inverse Problems, 2020, 36, 025010.
1.0

24

7 Metabolism plays a central role in the cortical spreading depression: Evidence from a mathematical
$7 \quad \begin{aligned} & \text { Metabolism plays a central role journal of Theoretical Biology, 2020, 486, 110093. } \\ & \text { model }\end{aligned}$

8 Metapopulation Network Models for Understanding, Predicting, and Managing the Coronavirus
Disease COVID-19. Frontiers in Physics, 2020, 8, .
1.0

Computational Model of Electrode-Induced Microenvironmental Effects on pH Measurements Near a
$9 \quad$ Cell Membrane. Multiscale Modeling and Simulation, 2020, 18, 1053-1075.

A Bayesian filtering approach to layer stripping for electrical impedance tomography. Inverse
Problems, 2020, 36, 055014.

Sparsity Promoting Hybrid Solvers for Hierarchical Bayesian Inverse Problems. SIAM Journal of
Scientific Computing, 2020, 42, A3761-A3784.

Bayesian Mesh Adaptation for Estimating Distributed Parameters. SIAM Journal of Scientific Computing, 2020, 42, A3878-A3906.
1.3

Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth
Weighting. Brain Topography, 2019, 32, 363-393.
Brain energetics plays a key role in the coordination of electrophysiology, metabolism and
14 hemodynamics: Evidence from an integrated computational model. Journal of Theoretical Biology,
0.8

2019, 478, 26-39.
Hierachical Bayesian models and sparsity: 〈i>â,"‘/i〉<sub>2<|sub>-magic. Inverse Problems, 2019, 35, 035003.

Approximation of continuous EIT data from electrode measurements with Bayesian methods. Inverse Problems, 2019, 35, 045012.

Estimating hemodynamic stimulus and blood vessel compliance from cerebral blood flow data.
Journal of Theoretical Biology, 2019, 460, 243-261.
0.8
19 extracellular potassium and oxygen. Journal of Theoretical Biology, 2018, 446, 238-258.
Inverse problems: From regularization to Bayesian inference. Wiley Interdisciplinary Reviews:
Computational Statistics, 2018, 10, e1427.

22 Bayes Meets Krylov: Statistically Inspired Preconditioners for CGLS. SIAM Review, 2018, 60, 429-461. 4.221

Beyond the Model Limit: Parameter Inference Across Scales. SIAM-ASA Journal on Uncertainty	1.1

Priorconditioned CGLS-Based Quasi-MAP Estimate, Statistical Stopping Rule, and Ranking of Priors.
SIAM Journal of Scientific Computing, 2017, 39, S477-S500.
1.3

5

Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of
neuronâ€"astrocyte metabolism. Journal of Mathematical Biology, 2016, 73, 1823-1849.
$0.8 \quad 8$

Computational issues in linear multistep method particle filtering. AIP Conference Proceedings, 2016, ,
$0.3 \quad 2$
27 A hierarchical Krylovâ€"Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Problems, 2015, 31, 125005.

$1.0 \quad 32$
28 Life sciences through mathematical models. Rendiconti Lincei, 2015, 26, 193-201.1.0

5

29	A CS decomposition for orthogonal matrices with application to eigenvalue computation. Linear Algebra and Its Applications, 2015, 476, 197-232.	0.4	1
30	A spatially distributed computational model of brain cellular metabolism. Journal of Theoretical Biology, 2015, 376, 48-65.	0.8	22
31	Stochastic modelling of muscle recruitment during activity. Interface Focus, 2015, 5, 20140094.	1.5	47

32 Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I:

Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9, 767-789.

34 Statistical Methods in Imaging. , 2015, , 1343-1392.

35 Vectorized and parallel particle filter SMC parameter estimation for stiff ODEs. , 2015, , .

Astrocytic tracer dynamics estimated from [1-11C]-acetate PET measurements. Mathematical Medicine
and Biology, 2014, 32, dqu021.

Inverse problems in the Bayesian framework. Inverse Problems, 2014, 30, 110301.
1.0

Dynamic updating of numerical model discrepancy using sequential sampling. Inverse Problems, 2014, 30, 114019.

Variable order smoothness priors for ill-posed inverse problems. Mathematics of Computation, 2014, 84, 1753-1773.

Modeling HIV-1 Dynamics and Fitness in Cell Culture Across Scales. Bulletin of Mathematical Biology, 2014, 76, 486-514.

Computational tools for calculating alternative muscle force patterns during motion: A comparison
of possible solutions. Journal of Biomechanics, 2013, 46, 2097-2100.

Quantitative in silico Analysis of Neurotransmitter Pathways Under Steady State Conditions.
Frontiers in Endocrinology, 2013, 4, 137.

Bayesian Preconditioned CGLS for Source Separation in MEG Time Series. SIAM Journal of Scientific Computing, 2013, 35, B778-B798.

Linear multistep methods, particle filtering and sequential Monte Carlo. Inverse Problems, 2013, 29,
085007.

Left and right preconditioning for electrical impedance tomography with structural information.
Inverse Problems, 2012, 28, 055015.

MÃ@nage Ã Trois: The Role of Neurotransmitters in the Energy Metabolism of Astrocytes, Glutamatergic,
and GABAergic Neurons. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1472-1483.

The Metabolism of Neurons and Astrocytes Through Mathematical Models. Annals of Biomedical
Engineering, 2012, 40, 2328-2344.

Quantitative imaging with electrical impedance spectroscopy. Physics in Medicine and Biology, 2012, 57, 7289-7302.

A reactionâ€"diffusion model of CO2 influx into an oocyte. Journal of Theoretical Biology, 2012, 309, 185-203.

A hybrid stochasticâ€"deterministic computational model accurately describes spatial dynamics and
virus diffusion in HIV-1 growth competition assay. Journal of Theoretical Biology, 2012, 312, 120-132.

Bayesian mixture models for source separation in MEG. Inverse Problems, 2011, 27, 115001.

Dynamic activation model for a glutamatergic neurovascular unit. Journal of Theoretical Biology,
2011, 274, 12-29.

Hierarchical beamformer and cross-talk reduction in electroneurography. Journal of Neural
Engineering, 2011, 8, 056002.

```
5 5 ~ S t a t i s t i c a l ~ M e t h o d s ~ i n ~ I m a g i n g . , ~ 2 0 1 1 , ~ , ~ 9 1 3 - 9 5 7 . ~
```

Metabolica: A statistical research tool for analyzing metabolic networks. Computer Methods and
Programs in Biomedicine, 2010, 97, 151-167.

Energetics of Inhibition: Insights with a Computational Model of the Human GABAergic
58 Neuronâ€"Astrocyte Cellular Complex. Journal of Cerebral Blood Flow and Metabolism, 2010, 30,

59 Hierarchical regularization for edge-preserving reconstruction of PET images. Inverse Problems, 2010,
26, 035010.
1.0

Astrocytes as the Glucose Shunt for Glutamatergic Neurons at High Activity: An In Silico Study.
Journal of Neurophysiology, 2009, 101, 2528-2538.

61 Conditionally Gaussian Hypermodels for Cerebral Source Localization. SIAM Journal on Imaging
Sciences, 2009, 2, 879-909.
1.3

75

62 In silico study of lactate metabolism in brain during visual stimulation. FASEB Journal, 2009, 23, LB113.
0.2

0
63 Dynamic Bayesian sensitivity analysis of a myocardial metabolic model. Mathematical Biosciences, 2008,
212, 1-21.
0.9

6

64 An adaptive smoothness regularization algorithm for optical tomography. Optics Express, 2008, 16, 19957.
1.7

11

```
65 Sampling-Based Analysis of a Spatially Distributed Model for Liver Metabolism at Steady State.
Multiscale Modeling and Simulation, 2008, 7, 407-431.
```

$0.6 \quad 12$

66 Hypermodels in the Bayesian imaging framework. Inverse Problems, 2008, 24, 034013.
1.0

78

> Inverse problems and computational cell metabolic models: a statistical approach. Journal of Physics: Conference Series, 2008, 124, 012003.
$0.3 \quad 1$

68 Computational modelling of cellular level metabolism. Journal of Physics: Conference Series, 2008, 124, 012011.

A mathematical model of liver metabolism: from steady state to dynamic. Journal of Physics:

74 Fast simulation of solid tumors thermal ablation treatments with a 3D reaction diffusion model.
5 Computers in Biology and Medicine, 2007, 37, 1173-1182.
1.1
perspective. Journal of Computational and Applied Mathematics, 2007, 198, 378-395.
35
$75 \quad$ Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion

Bayesian flux balance analysis applied to a skeletal muscle metabolic model. Journal of Theoretical
$76 \quad \begin{aligned} & \text { Bayesian flux balance analysis } \\ & \text { Biology, 2007, 248, 91-110. }\end{aligned}$
81 Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems and Imaging, 2007, 1, 247-263.
91 Statistical elimination of boundary artefacts in image deblurring. Inverse Problems, 2005, 21, 1697-1714. 1.0

92 Regularization of inverse planning for intensity-modulated radiotherapy. Medical Physics, 2005, 32,
1.6 501-514.

11

93 Priorconditioners for linear systems. Inverse Problems, 2005, 21, 1397-1418.
1.0

41

94 Non-negativity and iterative methods for ill-posed problems. Inverse Problems, 2004, 20, 1747-1758.
1.0

47

95 L-Curve and Curvature Bounds for Tikhonov Regularization. Numerical Algorithms, 2004, 35, 301-314.
1.1

50

96
Tikhonov Regularization with a Solution Constraint. SIAM Journal of Scientific Computing, 2004, 26,
224-239.

Regularized autoregressive analysis of intravascular ultrasound backscatter: improvement in spatial
97 accuracy of tissue maps. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 420-431.

98 On the Evaluation of Polynomial Coefficients. Numerical Algorithms, 2003, 33, 153-161.
1.1

19

99 Tikhonov Regularization of Large Linear Problems. BIT Numerical Mathematics, 2003, 43, 263-283.

101 Symmetric Gaussâ€"Lobatto and Modified Anti-Gauss Rules. BIT Numerical Mathematics, 2003, 43, 541-554. 1.0
109 The restarted QR-algorithm for eigenvalue computation of structured matrices. Journal of
111 GMRES, L-Curves, and Discrete Ill-Posed Problems. BIT Numerical Mathematics, 2002, 42, 44-65.
113 Polynomial zerofinders based on Szeg $\AA^{〔}$ polynomials. Journal of Computational and Applied 1.1 Mathematics, 2001, 127, 1-16. 11
An iterative method with error estimators. Journal of Computational and Applied Mathematics, 2001, 127, 93-119.
On the solution of
$2001,8,435-451$.
<title>Restoration of images with spatially variant blur by the GMRES method</title>. , 2000, 4116, 364.7
117 <title>L-curve for the MINRES method</title >. , 2000, , 2
118 GMRES-type methods for inconsistent systems. Linear Algebra and Its Applications, 2000, 316, 157-169.
119 Iterative methods for large continuation problems. Journal of Computational and AppliedMathematics, 2000, 123, 217-240.
1.1 15Tikhonov regularization and the L-curve for large discrete ill-posed problems. Journal of
127 On an inverse eigenproblem for Jacobi matrices. Advances in Computational Mathematics, 1999, 11, 11-20. 0.8

128 A block-Lanczos method for large continuation problems. Numerical Algorithms, 1999, 21, 109-118.
1.1

2

129 Estimation of the L-Curve via Lanczos Bidiagonalization. BIT Numerical Mathematics, 1999, 39, 603-619. 88

130 Iterative exponential filtering for large discrete ill-posed problems. Numerische Mathematik, 1999, 83,
535-556.
0.9

13

131 Applications of Anti-Gauss Quadrature Rules in Linear Algebra. , 1999, , 41-56.

132 Computation of a Few Small Eigenvalues of a Large Matrix with Application to Liquid Crystal
Modeling. Journal of Computational Physics, 1998, 146, 203-226.
1.9

17

A hybrid iterative method for symmetric indefinite linear systems. Journal of Computational and
Applied Mathematics, 1998, 92, 109-133.

Adaptively Preconditioned GMRES Algorithms. SIAM Journal of Scientific Computing, 1998, 20, 243-269.
1.3

97

135 Smooth or abrupt: a comparison of regularization methods. , 1998, , .

136 Iterative methods for $X \hat{a}^{\prime \prime} A X B=C$. Journal of Computational and Applied Mathematics, 1997, 86, 73-101.
1.1

23

137 Factorizations of Cauchy matrices. Journal of Computational and Applied Mathematics, 1997, 86, 103-123.
$1.1 \quad 7$

Application of ADI Iterative Methods to the Restoration of Noisy Images. SIAM Journal on Matrix
138 Analysis and Applications, 1996, 17, 165-186.
0.7

157

139 Adaptive Richardson iteration based on Leja points. Journal of Computational and Applied
1.1

14
Mathematics, 1996, 71, 267-286.
0.4

13
Applications, 1996, 249, 125-155.

An adaptive Richardson iteration method for indefinite linear systems. Numerical Algorithms, 1996, 12,
125-149.
1.1

14

A hybrid iterative method for symmetric positive definite linear systems. Numerical Algorithms, 1996,
11, 79-98.
1.1

5

143 Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT Numerical
Mathematics, 1996, 36, 400-421.
1.0

49

Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors. Numerische Mathematik, 1994, 68, 3-16.
149 A stochastic roundoff error analysis for the convolution. Mathematics of Computation, 1992, 59,151 Roundoff error for floating point representation of real data. Communications in Statistics - Theory
and Methods, 1991, 20, 2687-2695.
A stochastic roundoff error analysis for the fast Fourier transform. Mathematics of Computation, 1991, 56, 755-774.

Numerical aspects of some solution methods for large Sylvester-observer equations. , 0, , .
2

154 'blind' data calibration of intravascular ultrasound data for automated tissue characterization. , 0, , .

