List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3333533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residue extrapolation and group maximum residue level recommendation for four pesticides in the four kinds of vegetable crop groups. International Journal of Environmental Analytical Chemistry, 2023, 103, 995-1010.	1.8	4
2	Utilizing <scp>Plackett–Burman</scp> design and response surface analysis to optimize ultrasonic cleaning of pesticide residues from rape. Journal of the Science of Food and Agriculture, 2022, 102, 2061-2069.	1.7	5
3	Removal of difenoconazole and nitenpyram by composite calcium alginate beads during apple juice clarification. Chemosphere, 2022, 286, 131813.	4.2	18
4	COSMO-RS prediction and experimental verification of deep eutectic solvents for water insoluble pesticides with high solubility. Journal of Molecular Liquids, 2022, 349, 118139.	2.3	7
5	Amino Acid Ionic Liquids as a Potential Adjuvant for Fungicide Formulations: COSMO-RS Prediction and Dissolution Mechanism Elucidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 3295-3310.	3.2	7
6	Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Analytica Chimica Acta, 2022, 1201, 339632.	2.6	24
7	Progress in preparation of plant biomass-derived biochar and application in pesticide residues field. Chinese Journal of Chromatography (Se Pu), 2022, 40, 499-508.	0.1	0
8	Performance and kinetic of pesticide residues removal by microporous starch immobilized laccase in a combined adsorption and biotransformation process. Environmental Technology and Innovation, 2021, 21, 101235.	3.0	22
9	Effect of storage states on stability of three organophosphorus insecticide residues on cowpea samples. Journal of the Science of Food and Agriculture, 2021, 101, 6020-6026.	1.7	3
10	Determination of desmedipham residue in 21 foods by HPLC-MS/MS combined with a modified QuEChERS and mixed-mode SPE clean-up method. Journal of Food Composition and Analysis, 2021, 102, 104004.	1.9	7
11	Residue analysis and removal of procymidone in cucumber after field application. Food Control, 2021, 128, 108168.	2.8	11
12	Residue behaviour and dietary risk assessment of emamectin benzoate in mango under field condition using modified QuEChERS method combined with HPLC-MS/MS. International Journal of Environmental Analytical Chemistry, 2020, 100, 333-345.	1.8	5
13	Meptyldinocap and azoxystrobin residue behaviors in different ecosystems under open field conditions and distribution on processed cucumber. Journal of the Science of Food and Agriculture, 2020, 100, 648-655.	1.7	15
14	Novel eco-friendly ionic liquids to solubilize seven hydrophobic pesticides. Journal of Molecular Liquids, 2020, 300, 112260.	2.3	11
15	Residue behavior and removal of iprodione in garlic, green garlic, and garlic shoot. Journal of the Science of Food and Agriculture, 2020, 100, 4705-4713.	1.7	15
16	Mechanism of interactions between organophosphorus insecticides and human serum albumin: Solid-phase microextraction, thermodynamics and computational approach. Chemosphere, 2020, 253, 126698.	4.2	13
17	The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives. Food Chemistry, 2020, 331, 127352.	4.2	6
18	Improved analysis of propamocarb and cymoxanil for the investigation of residue behavior in two vegetables with different cultivation conditions. Journal of the Science of Food and Agriculture, 2020, 100, 3157-3163.	1.7	8

#	Article	IF	CITATIONS
19	More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. Environmental Science & Technology, 2020, 54, 6152-6165.	4.6	74
20	The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry, 2019, 298, 125007.	4.2	36
21	Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 7791-7806.	1.9	41
22	Residue Analysis and Risk Assessment of Oxathiapiprolin and Its Metabolites in Cucumbers under Field Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 12904-12910.	2.4	22
23	Storage stability improvement of organophosphorus insecticide residues on representative fruit and vegetable samples for analysis. Journal of Food Processing and Preservation, 2019, 43, e14048.	0.9	6
24	Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase. Chemosphere, 2019, 233, 49-56.	4.2	73
25	Residue Distribution, Dissipation Behavior, and Removal of Four Fungicide Residues on Harvested Apple after Waxing Treatment. Journal of Agricultural and Food Chemistry, 2019, 67, 2307-2312.	2.4	16
26	Cover Image, Volume 43, Issue 8. Journal of Food Processing and Preservation, 2019, 43, e14152.	0.9	0
27	Trace Analysis of Fluroxypyr-Meptyl and Fluroxypyr in Wheat and Soil Ecosystem Based on Ion Column-Solid Phase Extraction Method and Liquid Chromatography-Tandem Mass Spectrometry. Food Analytical Methods, 2018, 11, 2261-2271.	1.3	1
28	Influence of lactic acid bacteria on stereoselective degradation of theta ypermethrin. Chirality, 2018, 30, 310-318.	1.3	1
29	Storage stability of three organophosphorus pesticides on cucumber samples for analysis. Food Chemistry, 2018, 250, 230-235.	4.2	33
30	lonic liquid-based air-assisted liquid–liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples. Food Chemistry, 2018, 239, 354-359.	4.2	41
31	Changes in eleven pesticide residues in jujube (<i>Ziziphus jujuba</i> Mill.) during drying processing. Drying Technology, 2018, 36, 965-972.	1.7	22
32	Bitter gourd has the highest azoxystrobinon residue after open field application on four cucurbit vegetables. PLoS ONE, 2018, 13, e0203967.	1.1	2
33	Storage stability of organophosphorus pesticide residues in peanut and soya bean extracted solutions. Royal Society Open Science, 2018, 5, 180757.	1.1	7
34	Development of passive samplers for in situ measurement of pyrethroid insecticides in surface water. Environmental Pollution, 2017, 224, 516-523.	3.7	22
35	Tebuconazole and Azoxystrobin Residue Behaviors and Distribution in Field and Cooked Peanut. Journal of Agricultural and Food Chemistry, 2017, 65, 4484-4492.	2.4	21
36	Binary–solvent–based ionic–liquid–assisted surfactantâ€enhanced emulsification microextraction for the determination of four fungicides in apple juice and apple vinegar. Journal of Separation Science, 2017, 40, 901-908.	1.3	10

#	Article	IF	CITATIONS
37	Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid–liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea. Journal of Chromatography A, 2017, 1518, 1-7.	1.8	11
38	Application of clethodim pesticide water-based formulation prepared by 1-decyl-3-methyl imidazolium bromide aqueous solution. Journal of Molecular Liquids, 2017, 244, 521-527.	2.3	8
39	Solubilization of seven hydrophobic pesticides in quaternary ammonium based eco-friendly ionic liquid aqueous systems. New Journal of Chemistry, 2017, 41, 10598-10606.	1.4	12
40	Fate of triadimefon and its metabolite triadimenol in jujube samples during jujube wine and vinegar processing. Food Control, 2017, 73, 468-473.	2.8	28
41	Efficacy of Difenoconazole Emulsifiable Concentrate with Ionic Liquids against Cucumbers Powdery Mildew. International Journal of Chemical Engineering, 2017, 2017, 1-6.	1.4	7
42	Chronic and acute risk assessment of human exposed to novaluron-bifenthrin mixture in cabbage. Environmental Monitoring and Assessment, 2016, 188, 528.	1.3	9
43	Residues and dissipation of chlorothalonil and azoxystrobin in cabbage under field conditions. International Journal of Environmental Analytical Chemistry, 2016, 96, 1105-1116.	1.8	8
44	Improved solubility of sparingly soluble pesticides in mixed ionic liquids. RSC Advances, 2016, 6, 58106-58112.	1.7	7
45	Residues and risk assessment of bifenthrin and chlorfenapyr in eggplant and soil under open ecosystem conditions. International Journal of Environmental Analytical Chemistry, 2016, 96, 173-184.	1.8	12
46	Vortex-assisted matrix solid–liquid dispersive microextraction for the analysis of triazole fungicides in cotton seed and honeysuckle by gas chromatography. Food Chemistry, 2016, 196, 867-876.	4.2	24
47	Determination of Chlorothalonil Residue in Cabbage by a Modified QuEChERS-Based Extraction and Gas Chromatography–Mass Spectrometry. Food Analytical Methods, 2016, 9, 656-663.	1.3	17
48	Novel surface-active ionic liquids used as solubilizers for water-insoluble pesticides. Journal of Hazardous Materials, 2015, 297, 340-346.	6.5	30
49	Air-assisted liquid–liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples. Analytica Chimica Acta, 2015, 875, 54-60.	2.6	39
50	Dissipation, terminal residues and risk assessment of fluopicolide and its metabolite in cucumber under field conditions. Environmental Monitoring and Assessment, 2015, 187, 698.	1.3	9
51	Low-density solvent based vortex-assisted surfactant enhanced emulsification microextraction with a home-made extraction device for the determination of four herbicide residues in river water. Analytical Methods, 2015, 7, 9513-9519.	1.3	3
52	Ionic-liquid-based, manual-shaking- and ultrasound-assisted, surfactant-enhanced emulsification microextraction for the determination of three fungicide residues in juice samples. Journal of Separation Science, 2015, 38, 93-99.	1.3	17
53	Rapid and sensitive analysis of nine fungicide residues in chrysanthemum by matrix extraction-vortex-assisted dispersive liquid–liquid microextraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 975, 9-17.	1.2	25
54	Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 666-675.	1.1	35

#	Article	IF	CITATIONS
55	Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1562-1567.	1.1	24
56	Multiresidue analysis of 16 pesticides in jujube using gas chromatography and mass spectrometry with multiwalled carbon nanotubes as a sorbent. Journal of Separation Science, 2014, 37, 3362-3369.	1.3	18
57	Determination of Fungicides in Fruit Juice by Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Solvent Droplets Followed by High Performance Liquid Chromatography. Journal of AOAC INTERNATIONAL, 2014, 97, 183-187.	0.7	7
58	Development and Validation of an Alternative to Conventional Pretreatment Methods for Residue Analysis of Butachlor in Water, Soil, and Rice. Journal of AOAC INTERNATIONAL, 2014, 97, 245-251.	0.7	5
59	Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Protection, 2014, 60, 78-82.	1.0	19
60	Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquidâ îliquid microextraction coupled with gas chromatography. Journal of Separation Science, 2014, 37, 845-852.	1.3	17
61	Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 2014, 150, 182-186.	4.2	47
62	Effervescenceâ€assisted dispersive liquid–liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. Journal of Separation Science, 2014, 37, 3157-3163.	1.3	47
63	Simultaneous Determination of Aflatoxins and Ochratoxin A in Bee Pollen by Low-Temperature Fat Precipitation and Immunoaffinity Column Cleanup Coupled with LC-MS/MS. Food Analytical Methods, 2014, 7, 690-696.	1.3	30
64	Dissipation and residues of clethodim and its oxidation metabolites in a rape-field ecosystem using QuEChERS and liquid chromatography/tandem mass spectrometry. Food Chemistry, 2014, 143, 170-174.	4.2	38
65	Ultrasound-assisted surfactant-enhanced emulsification microextraction based on the solidification of a floating organic droplet used for the simultaneous determination of six fungicide residues in juices and red wine. Journal of Chromatography A, 2013, 1300, 64-69.	1.8	59
66	Dissipation and Residue of Bifenthrin in Wheat under Field Conditions. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 238-241.	1.3	11
67	Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction Following High-Performance Liquid Chromatography for the Determination of Fungicides in Fruit Juices. Food Analytical Methods, 2013, 6, 481-487.	1.3	18
68	Air-assisted liquid–liquid microextraction used for the rapid determination of organophosphorus pesticides in juice samples. Journal of Chromatography A, 2013, 1311, 41-47.	1.8	52
69	2-Acetylfuran-3-Glucopyranoside as a Novel Marker for the Detection of Honey Adulterated with Rice Syrup. Journal of Agricultural and Food Chemistry, 2013, 61, 7488-7493.	2.4	60
70	Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species. Bioresource Technology, 2013, 130, 478-485.	4.8	16
71	QuEChERS in Combination with Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Method for the Simultaneous Analysis of Six Fungicides in Grape. Food Analytical Methods, 2013, 6, 1515-1521.	1.3	14
72	Determination of monosulfuron-ester residues in grains, straw, green plants and soil of wheat by modified QuEChERS and LC-MS/MS. Analytical Methods, 2013, 5, 2267.	1.3	10

#	Article	IF	CITATIONS
73	Comparison of different sample preâ€treatments for multiâ€residue analysis of organochlorine and pyrethroid pesticides in chrysanthemum by gas chromatography with electron capture detection. Journal of Separation Science, 2013, 36, 1311-1316.	1.3	15
74	Aqueous normal phase liquid chromatography coupled with tandem time-of-flight quadrupole mass spectrometry for determination of zanamivir in human serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 906, 58-62.	1.2	15
75	Dissipation and residue of fenpropidin in wheat and soil under field conditions. Ecotoxicology and Environmental Safety, 2012, 77, 52-56.	2.9	11
76	Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions. Ecotoxicology and Environmental Safety, 2012, 80, 252-257.	2.9	36
77	Dissipation and Residues of Flutriafol in Wheat and Soil Under Field Conditions. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 1040-1045.	1.3	8
78	Dissipation and Residue of Myclobutanil in Lychee. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 902-905.	1.3	13
79	Dissipation and residue of 2,4-D isooctyl ester in wheat and soil. Environmental Monitoring and Assessment, 2012, 184, 4247-4251.	1.3	15
80	Stereoselective dissipation of epoxiconazole in grape (Vitis vinifera cv. Kyoho) and soil under field conditions. Chemosphere, 2012, 87, 982-987.	4.2	46
81	Analysis of coenzyme Q10 in bee pollen using online cleanup by accelerated solvent extraction and high performance liquid chromatography. Food Chemistry, 2012, 133, 573-578.	4.2	21
82	Stereoselective separation and determination of triadimefon and triadimenol in wheat, straw, and soil by liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 2012, 35, 166-173.	1.3	27
83	The decline and residues of hexaconazole in tomato and soil. Environmental Monitoring and Assessment, 2012, 184, 1573-1579.	1.3	28
84	Rapid determination of melamine in soil and strawberry by liquid chromatography–tandem mass spectrometry. Food Control, 2011, 22, 1629-1633.	2.8	33
85	Dissipation and residue of dimethomorph in pepper and soil under field conditions. Ecotoxicology and Environmental Safety, 2011, 74, 1331-1335.	2.9	43
86	IL-USA-DLLME Method to Simultaneously Extract and Determine Four Phenylurea Herbicides in Water Samples. Current Analytical Chemistry, 2011, 7, 357-364.	0.6	16
87	Analysis of cyprodinil in leek and pepper and its decline under field conditions. Environmental Monitoring and Assessment, 2011, 179, 209-215.	1.3	6
88	Application of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction followed high-performance liquid chromatography for the determination of fungicides in red wine. Mikrochimica Acta, 2011, 173, 453-457.	2.5	33
89	Dissipation of Oxaziclomefone and Residue Analysis in Rice, Soil and Water Under Field Conditions. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 28-32.	1.3	3
90	Dissipation and Residue of Cyprodinil in Strawberry and Soil. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 323-325.	1.3	13

#	Article	IF	CITATIONS
91	Multiâ€residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3289-3297.	0.7	36
92	Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction. Analytical and Bioanalytical Chemistry, 2010, 397, 3089-3095.	1.9	35
93	Determination of Endocrine Disrupting Chemicals in Surface Water and Industrial Wastewater from Beijing, China. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 401-405.	1.3	41
94	Dissipation and residue of famoxadone in grape and soil. Environmental Monitoring and Assessment, 2010, 162, 219-224.	1.3	10
95	Famoxadone residue and dissipation in watermelon and soil. Ecotoxicology and Environmental Safety, 2010, 73, 183-188.	2.9	21
96	Application of Graphitized Carbon Black to the QuEChERS Method for Pesticide Multiresidue Analysis in Spinach. Journal of AOAC INTERNATIONAL, 2009, 92, 538-547.	0.7	59
97	Determination of Organophosphorus Pesticides in Leeks (Allium porrum L.) by GC-FPD. Chromatographia, 2009, 69, 79-84.	0.7	63
98	Use of Multiwalled Carbon Nanotubes as a SPE Adsorbent for Analysis of Carfentrazone-Ethyl in Water. Chromatographia, 2009, 69, 73-77.	0.7	18
99	GC–ECD analysis of S-metolachlor (Dual Gold) in cotton plant and soil in trial field. Environmental Monitoring and Assessment, 2008, 143, 1-7.	1.3	8
100	Dissipation and Residue of S-metolachlor in Maize and Soil. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 391-394.	1.3	22
101	Use of graphitic carbon black and primary secondary amine for determination of 17 organophosphorus pesticide residues in spinach. Journal of Separation Science, 2008, 31, 3588-3594.	1.3	38
102	Simplified Pesticide Multiresidue Analysis of Soybean Oil by Low-Temperature Cleanup and Dispersive Solid-Phase Extraction Coupled with Gas Chromatography/Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2007, 90, 1387-1394.	0.7	37
103	Determination of Organophosphorus Pesticides in Lycium barbarum by Gas Chromatography with Flame Photometric Detection. Journal of AOAC INTERNATIONAL, 2007, 90, 271-276.	0.7	15
104	Multiresidue analytical method of pesticides in peanut oil using lowâ€ŧemperature cleanup and dispersive solid phase extraction by GCâ€MS. Journal of Separation Science, 2007, 30, 2097-2104.	1.3	38
105	Determination of Organophosphorus Pesticides in Soybean Oil, Peanut Oil and Sesame Oil by Low-Temperature Extraction and GC-FPD. Chromatographia, 2007, 66, 625-629.	0.7	30
106	Application of matrix solid-phase dispersion and liquid chromatography–mass spectrometry to fungicide residue analysis in fruits and vegetables. Analytical and Bioanalytical Chemistry, 2007, 387, 673-685.	1.9	50
107	Fumonisins production by Fusarium proliferatum strains isolated from asparagus crown. Mycopathologia, 2007, 164, 127-134.	1.3	22
108	Multi-Residue Analysis of Some Polar Pesticides in Water Samples with SPE and LC–MS–MS. Chromatographia, 2006, 63, 233-237.	0.7	31

#	Article	IF	CITATIONS
109	Occurrence of fumonisins B1and B2in asparagus from Shandong province, P.R. China. Food Additives and Contaminants, 2005, 22, 673-676.	2.0	17
110	Simultaneous determination of five strobilurin fungicides and the metabolite BF-500-3 in cereals, fruits and vegetables. International Journal of Environmental Analytical Chemistry, 0, , 1-12.	1.8	6