
Giampiero Spalluto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3333051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fullerene derivatives: an attractive tool for biological applications. European Journal of Medicinal Chemistry, 2003, 38, 913-923.	5.5	780
2	Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Letters, 2005, 5, 1107-1110.	9.1	614
3	Mastering .betaKeto Esters. Chemical Reviews, 1995, 95, 1065-1114.	47.7	234
4	A _{2A} -Adenosine Receptor Reserve for Coronary Vasodilation. Circulation, 1998, 98, 711-718.	1.6	181
5	Progress in the pursuit of therapeutic adenosine receptor antagonists. Medicinal Research Reviews, 2006, 26, 131-159.	10.5	154
6	Novel Versatile Fullerene Synthons. Journal of Organic Chemistry, 2001, 66, 4915-4920.	3.2	136
7	Anti-HIV properties of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3615-3618.	2.2	133
8	A3 Adenosine Receptor Ligands: History and Perspectives. , 2000, 20, 103-128.		130
9	Pyrazolo[4,3- <i>e</i>]-1,2,4-triazolo[1,5- <i>c</i>]pyrimidine Derivatives:  Potent and Selective A _{2A} Adenosine Antagonists. Journal of Medicinal Chemistry, 1996, 39, 1164-1171.	6.4	121
10	Synthesis and Anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4437-4440.	2.2	114
11	Hemolytic Effects of Water-Soluble Fullerene Derivatives. Journal of Medicinal Chemistry, 2004, 47, 6711-6715.	6.4	114
12	7-Substituted 5-Amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2AAdenosine Receptor Antagonists:À A Study on the Importance of Modifications at the Side Chain on the Activity and Solubility. Journal of Medicinal Chemistry, 2002, 45, 115-126.	6.4	101
13	Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. British Journal of Pharmacology, 2001, 134, 116-126.	5.4	100
14	Synthesis, Biological Activity, and Molecular Modeling Investigation of New Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Human A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2002, 45, 770-780.	6.4	99
15	Design, Radiosynthesis, and Biodistribution of a New Potent and Selective Ligand for in Vivo Imaging of the Adenosine A2A Receptor System Using Positron Emission Tomography. Journal of Medicinal Chemistry, 2000, 43, 4359-4362.	6.4	96
16	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Highly Potent and Selective Human A3Adenosine Receptor Antagonists:Ä Influence of the Chain at the N8Pyrazole Nitrogen. Journal of Medicinal Chemistry, 2000, 43, 4768-4780.	6.4	89
17	A new approach to kainoids through tandem Michael reaction methodology: application to the enantioselective synthesis of (+)- and (-)alphaallokainic acid and to the formal synthesis of (-)alphakainic acid. Journal of Organic Chemistry, 1992, 57, 6279-6286.	3.2	83
18	Design, Synthesis, and Biological Evaluation of a Second Generation of Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as Potent and Selective A2AAdenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1998, 41, 2126-2133.	6.4	81

#	Article	IF	CITATIONS
19	Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Highly Potent and Selective Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 4473-4478.	6.4	80
20	Ligand-Based Homology Modeling as Attractive Tool to Inspect GPCR Structural Plasticity. Current Pharmaceutical Design, 2006, 12, 2175-2185.	1.9	80
21	Design, Synthesis, DNA Binding, and Biological Evaluation of Water-Soluble Hybrid Molecules Containing Two Pyrazole Analogues of the Alkylating Cyclopropylpyrroloindole (CPI) Subunit of the Antitumor Agent CC-1065 and Polypyrrole Minor Groove Binders. Journal of Medicinal Chemistry, 2001, 44, 2536-2543.	6.4	78
22	Synthesis, Biological Properties, and Molecular Modeling Investigation of the First Potent, Selective, and Water-Soluble Human A3 Adenosine Receptor Antagonist. Journal of Medicinal Chemistry, 2002, 45, 3579-3582.	6.4	74
23	Techniques: Recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends in Pharmacological Sciences, 2005, 26, 44-51.	8.7	72
24	Autocorrelation of Molecular Electrostatic Potential Surface Properties Combined with Partial Least Squares Analysis as Alternative Attractive Tool to Generate Ligand-Based 3D-QSARs. Current Drug Discovery Technologies, 2005, 2, 13-21.	1.2	71
25	A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro. British Journal of Pharmacology, 2006, 147, 524-532.	5.4	71
26	Combined Target-Based and Ligand-Based Drug Design Approach as a Tool To Define a Novel 3D-Pharmacophore Model of Human A3 Adenosine Receptor Antagonists: Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives as a Key Study. Journal of Medicinal Chemistry, 2005, 48, 152-162.	6.4	69
27	Synthesis and Biological Activity of a New Series of N6-Arylcarbamoyl, 2-(Ar)alkynyl-N6-arylcarbamoyl, and N6-Carboxamido Derivatives of Adenosine-5â€~-N-ethyluronamide as A1 and A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 1998, 41, 3174-3185.	6.4	68
28	Carbon Nanotubes Carrying Cellâ€Adhesion Peptides do not Interfere with Neuronal Functionality. Advanced Materials, 2009, 21, 2903-2908.	21.0	67
29	Synthesis, in Vitro Antiproliferative Activity, and DNA-Binding Properties of Hybrid Molecules Containing Pyrrolo[2,1-c][1,4]benzodiazepine and Minor-Groove-Binding Oligopyrrole Carriers. Journal of Medicinal Chemistry, 1999, 42, 5131-5141.	6.4	64
30	Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Adenosine Receptor Antagonists. Influence of the N5 Substituent on the Affinity at the Human A3and A2BAdenosine Receptor Subtypes:Â A Molecular Modeling Investigation. Journal of Medicinal Chemistry, 2003, 46, 4287-4296.	6.4	55
31	DNA-Photocleavage Agents. Current Pharmaceutical Design, 2001, 7, 1781-821.	1.9	51
32	Non Peptidic αvβ3 Antagonists: Recent Developments. Current Medicinal Chemistry, 2005, 12, 51-70.	2.4	50
33	NovelN6-(Substituted-phenylcarbamoyl)adenosine-5â€~-uronamides as Potent Agonists for A3Adenosine Receptors. Journal of Medicinal Chemistry, 1996, 39, 802-806.	6.4	48
34	The current status of pharmacotherapy for the treatment of Parkinson's disease: transition from single-target to multitarget therapy. Drug Discovery Today, 2019, 24, 1769-1783.	6.4	46
35	A New Multi-Charged C60 Derivative: Synthesis and Biological Properties. European Journal of Organic Chemistry, 2002, 2002, 2928-2934.	2.4	44
36	Medicinal Chemistry of A2A Adenosine Receptor Antagonists. Current Topics in Medicinal Chemistry, 2003, 3, 403-411.	2.1	43

#	Article	IF	CITATIONS
37	The Significance of 2-Furyl Ring Substitution with a 2-(<i>para</i> substituted) Aryl Group in a New Series of Pyrazolo-triazolo-pyrimidines as Potent and Highly Selective hA ₃ Adenosine Receptors Antagonists: New Insights into Structureâ''Affinity Relationship and Receptorâ''Antagonist Recognition, Journal of Medicinal Chemistry, 2010, 53, 3361-3375.	6.4	40
38	Advances in Computational Techniques to Study GPCR–Ligand Recognition. Trends in Pharmacological Sciences, 2015, 36, 878-890.	8.7	40
39	6-Amino-2-mercapto-3H-pyrimidin-4-one derivatives as new candidates for the antagonism at the P2Y12 receptors. Bioorganic and Medicinal Chemistry, 2009, 17, 4612-4621.	3.0	39
40	Demystifying the three dimensional structure of G protein-coupled receptors (GPCRs) with the aid of molecular modeling. Chemical Communications, 2003, , 2949.	4.1	38
41	Autocorrelation of Molecular Electrostatic Potential Surface Properties Combined with Partial Least Squares Analysis as New Strategy for the Prediction of the Activity of Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 5698-5704.	6.4	38
42	Highlights on the Development of A2A Adenosine Receptor Agonists and Antagonists. ChemMedChem, 2007, 2, 260-281.	3.2	38
43	The A ₃ adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Medicinal Research Reviews, 2013, 33, 235-335.	10.5	38
44	Fluorosulfonyl- and Bis-(β-chloroethyl)amino-phenylamino Functionalized Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives:  Irreversible Antagonists at the Human A3 Adenosine Receptor and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2001, 44, 2735-2742.	6.4	37
45	Novel benzoyl nitrogen mustard derivatives of pyrazole analogues of distamycin A: synthesis and antileukemic activity. Bioorganic and Medicinal Chemistry, 1999, 7, 251-262.	3.0	36
46	Novel fluorescent antagonist as a molecular probe in A3 adenosine receptor binding assays using flow cytometry. Biochemical Pharmacology, 2012, 83, 1552-1561.	4.4	33
47	Tandem michael reactions for the construction of pyrrolidine and piperidine ring systems. Tetrahedron Letters, 1990, 31, 3039-3042.	1.4	32
48	A2B Adenosine Receptor Antagonists: Recent Developments. Mini-Reviews in Medicinal Chemistry, 2005, 5, 1053-1060.	2.4	32
49	Generation and cycloaddition reactions of 3-substituted-2-nitro-1,3-dienes Tetrahedron Letters, 1991, 32, 2517-2520.	1.4	31
50	Synthesis of a hybrid fullerene–trimethoxyindole–oligonucleotide conjugate. Chemical Communications, 2001, , 17-18.	4.1	31
51	Linear and Nonlinear 3D-QSAR Approaches in Tandem with Ligand-Based Homology Modeling as a Computational Strategy To Depict the Pyrazolo-Triazolo-Pyrimidine Antagonists Binding Site of the Human Adenosine A _{2A} Receptor. Journal of Chemical Information and Modeling, 2008, 48, 350-363.	5.4	30
52	Synthesis and Biological Evaluation of a New Series of 1,2,4-Triazolo[1,5- <i>a</i>]-1,3,5-triazines as Human A _{2A} Adenosine Receptor Antagonists with Improved Water Solubility. Journal of Medicinal Chemistry, 2011, 54, 877-889.	6.4	30
53	The application of a 3D-QSAR (autoMEP/PLS) approach as an efficient pharmacodynamic-driven filtering method for small-sized virtual library: Application to a lead optimization of a human A3 adenosine receptor antagonist. Bioorganic and Medicinal Chemistry, 2006, 14, 4923-4932.	3.0	29
54	Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process. Bioorganic and Medicinal Chemistry, 2010, 18, 2524-2536.	3.0	29

#	Article	IF	CITATIONS
55	A Novel Conjugated Agent between Dopamine and an A _{2A} Adenosine Receptor Antagonist as a Potential Anti-Parkinson Multitarget Approach. Molecular Pharmaceutics, 2012, 9, 591-604.	4.6	29
56	Fluorescent ligands for adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 26-36.	2.2	28
57	Design, synthesis and biological activity of a pyrrolo [2,1-c][1,4]benzodiazepine (PBD)-distamycin hybrid. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3019-3024.	2.2	27
58	Synthesis and Biological Studies of a New Series of 5-Heteroarylcarbamoylaminopyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines as Human A3Adenosine Receptor Antagonists. Influence of the Heteroaryl Substituent on Binding Affinity and Molecular Modeling Investigations. Journal of Medicinal Chemistry, 2006, 49, 1720-1729.	6.4	27
59	Enantioselective synthesis of (+)- and (â^')-α-allokainic acid. Tetrahedron Letters, 1990, 31, 4917-4920.	1.4	26
60	Pyrazolo-Triazolo-Pyrimidine Derivatives as Adenosine Receptor Antagonists: A Possible Template for Adenosine Receptor Subtypes?. Current Pharmaceutical Design, 2002, 8, 2299-2332.	1.9	26
61	Synthesis and Molecular Modeling Studies of Fullereneâ^'5,6,7-Trimethoxyindoleâ^'Oligonucleotide Conjugates as Possible Probes for Study of Photochemical Reactions in DNA Triple Helices. European Journal of Organic Chemistry, 2002, 2002, 405-413.	2.4	26
62	Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A2A and A3 receptor pyrazolo-triazolo-pyrimidine antagonists binding sites. Bioorganic and Medicinal Chemistry, 2009, 17, 5259-5274.	3.0	26
63	Enantioselective synthesis of (â^')-meroquinene through tandem Michael reaction methodology Tetrahedron, 1994, 50, 2583-2590.	1.9	25
64	A new enantioselective route to kainoids: application to the formal synthesis of (–)-α-kainic acid. Journal of the Chemical Society Chemical Communications, 1991, , 390-391.	2.0	24
65	4-Isopropyl-2-oxazolin-5-one anion as a new convenient formyl anion equivalent for conjugate addition and aldol reactions Tetrahedron Letters, 1993, 34, 3907-3910.	1.4	24
66	Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson's disease treatment. PLoS ONE, 2018, 13, e0188212.	2.5	23
67	Synthesis and preliminary biological evaluation of [3H]-MRE 3008-F20: the first high affinity radioligand antagonist for the human A3 adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 209-211.	2.2	22
68	A Triazolotriazineâ€Based Dual GSKâ€3β/CKâ€1δLigand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition. ChemMedChem, 2019, 14, 310-314.	3.2	22
69	A New Synthetic Approach to Indazole Synthesis. Synthesis, 1997, 1997, 1140-1142.	2.3	21
70	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as adenosine receptor ligands: A starting point for searching A2B adenosine receptor antagonists. Drug Development Research, 2001, 53, 225-235.	2.9	21
71	Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics. In Silico Pharmacology, 2017, 5, 16.	3.3	20
72	G protein-coupled receptors as challenging druggable targets: insights from in silico studies. New Journal of Chemistry, 2006, 30, 301.	2.8	19

#	Article	IF	CITATIONS
73	Exploring Potency and Selectivity Receptor Antagonist Profiles Using a Multilabel Classification Approach: The Human Adenosine Receptors as a Key Study. Journal of Chemical Information and Modeling, 2009, 49, 2820-2836.	5.4	19
74	Structure-activity relationship of novel tallimustine derivatives: synthesis and antitumor activity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1247-1252.	2.2	18
75	Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: A complete structure–activity profile. Purinergic Signalling, 2007, 3, 183-193.	2.2	18
76	5,7-Disubstituted-[1,2,4]triazolo[1,5- a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. European Journal of Medicinal Chemistry, 2016, 108, 529-541.	5.5	18
77	Synthesis and biological evaluation of a new class of acyl derivatives of 3-amino-1-phenyl-4,5-dihydro-1H-pyrazol-5-one as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 327-332.	0.9	17
78	Exploring the Directionality of 5-Substitutions in a New Series of 5-Alkylaminopyrazolo[4,3- <i>e</i>]1,2,4-triazolo[1,5- <i>c</i>]pyrimidine as a Strategy To Design Novel Human A ₃ Adenosine Receptor Antagonists Journal of Medicinal Chemistry, 2012, 55, 9654-9668.	6.4	17
79	Therapeutic potential of A ₂ and A ₃ adenosine receptor: a review of novel patented ligands. Expert Opinion on Therapeutic Patents, 2012, 22, 369-390.	5.0	17
80	Synthesis and antitumor activity of novel distamycin derivatives. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1241-1246.	2.2	16
81	Revisiting a Receptor-Based Pharmacophore Hypothesis for Human A _{2A} Adenosine Receptor Antagonists. Journal of Chemical Information and Modeling, 2013, 53, 1620-1637.	5.4	16
82	Discovery of simplified N2-substituted pyrazolo[3,4-d]pyrimidine derivatives as novel adenosine receptor antagonists: Efficient synthetic approaches, biological evaluations and molecular docking studies. Bioorganic and Medicinal Chemistry, 2014, 22, 1751-1765.	3.0	16
83	Targeting Protein Kinase CK1δ with Riluzole: Could It Be One of the Possible Missing Bricks to Interpret Its Effect in the Treatment of ALS from a Molecular Point of View?. ChemMedChem, 2018, 13, 2601-2605.	3.2	16
84	4-Isopropyl-2-oxazolin-5-one anion as masked umpoled synthon for both formyl and hydroxycarbonyl anions: Generation, reactivity and synthetic applications. Tetrahedron, 1996, 52, 4719-4734.	1.9	15
85	Resolution of a CPzI precursor, synthesis and biological evaluation of (+) and (â^')-N-Boc-CPzI: A further validation of the relationship between chemical solvolytic stability and cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3087-3092.	2.2	15
86	A2A Adenosine Receptor Antagonists as Therapeutic Candidates: Are They Still an Interesting Challenge?. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1168-1174.	2.4	15
87	Current Chemistry: Fullerene Derivatives as Potential DNA Photoprobes. Australian Journal of Chemistry, 2001, 54, 223.	0.9	14
88	Pharmacophore elucidation for a new series of 2-aryl-pyrazolo-triazolo-pyrimidines as potent human A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2898-2905.	2.2	14
89	8-(2-Furyl)adenine derivatives as A2A adenosine receptor ligands. European Journal of Medicinal Chemistry, 2013, 70, 525-535.	5.5	14
90	Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4631-4697.	2.4	14

#	Article	IF	CITATIONS
91	Synthesis of the tritium labeled SCH 58261, a new non-xanthine A2A adenosine receptor antagonist. Journal of Labelled Compounds and Radiopharmaceuticals, 1996, 38, 725-732.	1.0	13
92	DNA minor-groove binders: results and design of new antitumor agents. Il Farmaco, 1999, 54, 15-25.	0.9	13
93	CC-1065 and the duocarmycins: recent developments. Expert Opinion on Therapeutic Patents, 2000, 10, 1853-1871.	5.0	13
94	Scaffold Decoration at Positions 5 and 8 of 1,2,4-Triazolo[1,5- <i>c</i>]Pyrimidines to Explore the Antagonist Profiling on Adenosine Receptors: A Preliminary Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2014, 57, 6210-6225.	6.4	13
95	[1,2,4]Triazolo[1,5-c]pyrimidines as adenosine receptor antagonists: Modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype. European Journal of Medicinal Chemistry, 2018, 157, 837-851.	5.5	13
96	Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and Structurally Simplified Analogs. Chemistry and SAR Profile as Adenosine Receptor Antagonists. Current Topics in Medicinal Chemistry, 2016, 16, 3224-3257.	2.1	13
97	New 2,6,9-trisubstituted adenines as adenosine receptor antagonists: a preliminary SAR profile. Purinergic Signalling, 2007, 3, 339-346.	2.2	12
98	Does the combination of optimal substitutions at the C2-, N5- and N8-positions of the pyrazolo-triazolo-pyrimidine scaffold guarantee selective modulation of the human A3 adenosine receptors?. Bioorganic and Medicinal Chemistry, 2011, 19, 6120-6134.	3.0	11
99	Conjugable A3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. European Journal of Medicinal Chemistry, 2020, 186, 111886.	5.5	11
100	Enantioselective synthesis of the hexahydronaphthalene nucleus of (â^')-compactin from ethyl (1R,2S)-2-methyl-4-oxocyclohexanecarboxylate and 2-(3-nitropropyl)-1,3-dioxolane as four carbon bifunctional annelating agent Tetrahedron, 1994, 50, 11743-11754.	1.9	10
101	A1 and A3 adenosine receptor agonists: an overview. Expert Opinion on Therapeutic Patents, 1999, 9, 515-527.	5.0	10
102	Comparative molecular field analysis (CoMFA) of a series of selective adenosine receptor A2A antagonists. Drug Development Research, 1999, 46, 126-133.	2.9	10
103	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: A new pharmacological tool for the characterization of the human A3 adenosine receptor. Drug Development Research, 2001, 52, 406-415.	2.9	10
104	Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. Journal of Supramolecular Chemistry, 2002, 2, 327-334.	0.4	10
105	Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes. Purinergic Signalling, 2008, 4, 39-46.	2.2	10
106	Human A3 Adenosine Receptor as Versatile G Protein-Coupled Receptor Example to Validate the Receptor Homology Modeling Technology. Current Pharmaceutical Design, 2009, 15, 4069-4084.	1.9	10
107	Chemical Probes for the Adenosine Receptors. Pharmaceuticals, 2019, 12, 168.	3.8	10
108	Synthesis of pyridazine derivatives through the unexpected intermediate 5â€amino―4â€cyano â€2,3â€dihydroâ€furanâ€2,3â€disulfonic acid disodium salt. Journal of Heterocyclic Chemistry, 2003, 40, 1065-1069.	2.6	9

#	Article	IF	CITATIONS
109	Synthesis and biological evaluation of new phenidone analogues as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 7-13.	0.9	9
110	Pyrazolo[4,3- <i>e</i>][1,2,4]triazolo[1,5- <i>c</i>]pyrimidines to develop functionalized ligands to target adenosine receptors: fluorescent ligands as an example. MedChemComm, 2019, 10, 1094-1108.	3.4	9
111	Developing novel classes of protein kinase CK1 $\hat{\Gamma}$ inhibitors by fusing [1,2,4]triazole with different bicyclic heteroaromatic systems. European Journal of Medicinal Chemistry, 2021, 216, 113331.	5.5	9
112	Unusual Ring-Opening Reaction of 6,7-Dihydrothieno[3,2-d]pyrimidine-2,4-dione Derivatives Leading to 5-(Alkylthio)-6-vinyluracils. Journal of Organic Chemistry, 1995, 60, 1461-1463.	3.2	8
113	Facile and Versatile Route to the Synthesis of Fused 2â€Pyridones: Useful Intermediates for Polycyclic Sytems. Synthetic Communications, 2006, 36, 1173-1183.	2.1	8
114	New 9-methyl-8-(4-hydroxyphenyl)adenine derivatives as A1 adenosine receptor antagonists. Collection of Czechoslovak Chemical Communications, 2011, 76, 1379-1393.	1.0	8
115	Chemical Synthesis of [13C]Daidzein. Journal of Medicinal Food, 1999, 2, 99-102.	1.5	7
116	Synthesis, biological studies and molecular modeling investigation of 1,3-dimethyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro [1,2,4]-triazolo [3,4-f]-purines as potential adenosine receptor antagonists. Il Farmaco, 2005, 60, 299-306.	0.9	7
117	Receptor-Driven Identification of Novel Human A3 Adenosine Receptor Antagonists as Potential Therapeutic Agents. Methods in Enzymology, 2010, 485, 225-244.	1.0	7
118	Response Surface Analysis as Alternative 3D-QSAR Tool: Human A3 Adenosine Receptor Antagonists as a Key Study. Letters in Drug Design and Discovery, 2007, 4, 122-127.	0.7	6
119	Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships. International Journal of Medicinal Chemistry, 2011, 2011, 1-15.	2.2	6
120	The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives. PLoS ONE, 2015, 10, e0143504.	2.5	6
121	Conjugates between minor groove binders and Zn(II)-tach complexes: Synthesis, characterization, and interaction with plasmid DNA. Tetrahedron, 2017, 73, 3014-3024.	1.9	5
122	Functionalized ligands targeting G protein-coupled adenosine receptors. Future Medicinal Chemistry, 2019, 11, 1673-1677.	2.3	4
123	Targeting G Protein oupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem, 2020, 15, 1909-1920.	3.2	4
124	Structure Activity Relationship of 4-Amino-2-thiopyrimidine Derivatives as Platelet Aggregation Inhibitors. Medicinal Chemistry, 2019, 15, 863-872.	1.5	4
125	1-Methyl-3-nitro-5-methoxycarbonyl Pyrazole. Molecules, 1998, 3, M46.	3.8	3
126	DNA minor groove alkylating agents structurally related to distamycin A. Expert Opinion on Therapeutic Patents, 2000, 10, 891-904.	5.0	2

#	Article	IF	CITATIONS
127	Fullerene Derivatives: An Attractive Tool for Biological Applications. ChemInform, 2004, 35, no.	0.0	1
128	Selective binding to human genomic sequences of two synthetic analogues structurally related to U-71184 and adozelesin. , 1999, 46, 96-106.		0
129	Synthesis and anti-HIV Properties of New Water-Soluble Bis-functionalized[60]fullerene Derivatives ChemInform, 2004, 35, no.	0.0	Ο
130	Synthesis of Pyridazine Derivatives Through the Unexpected Intermediate 5-Amino-4-cyano-2,3-dihydro-furan-2,3-disulfonic Acid Disodium Salt ChemInform, 2004, 35, no.	0.0	0
131	Potent and Selective A2A Adenosine Receptor Antagonists: Recent Improvements. Frontiers in Drug Design and Discovery, 2005, 2, 49-62.	0.3	Ο
132	Synthesis and Biological Evaluation of New Phenidone Analogues as Potential Dual Cyclooxygenase (COX-1 and COX-2) and Human Lipoxygenase (5-LOX) Inhibitors ChemInform, 2005, 36, no.	0.0	0
133	Synthesis, Biological Studies and Molecular Modeling Investigation of 1,3-Dimethyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-Tetrahydro-[1,2,4]-triazolo-[3,4-f]-purines as Potential Adenosine Receptor Antagonists ChemInform, 2005, 36, no.	0.0	Ο
134	Design, Synthesis and Evaluation of New Indolylpyrimidylpiperazines for Gastrointestinal Cancer Therapy. Molecules, 2019, 24, 3661.	3.8	0
135	Potent and selective A ₃ adenosine receptor antagonists bearing aminoesters as heterobifunctional moieties. RSC Medicinal Chemistry, 2021, 12, 254-262.	3.9	Ο