
Mark W B Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332840/publications.pdf Version: 2024-02-01

MARK W R WUSON

#	Article	IF	CITATIONS
1	Scalable ways to break the efficiency limit of single-junction solar cells. Applied Physics Letters, 2022, 120, .	1.5	4
2	Synthesis and optoelectronic properties of radical conjugated polyfluorenes. Chemical Communications, 2022, 58, 8630-8633.	2.2	1
3	Directed Ligand Exchange on the Surface of PbS Nanocrystals: Implications for Incoherent Photon Conversion. ACS Applied Nano Materials, 2021, 4, 5655-5664.	2.4	16
4	Anisotropic, Nonthermal Lattice Disordering Observed in Photoexcited PbS Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 22120-22132.	1.5	5
5	Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion. Chemical Science, 2021, 12, 14111-14120.	3.7	21
6	Binary Cu _{2–<i>x</i>} S Templates Direct the Formation of Quaternary Cu ₂ ZnSnS ₄ (Kesterite, Wurtzite) Nanocrystals. ACS Nano, 2021, 15, 18085-18099.	7.3	12
7	PbS Nanocrystals Made Using Excess Lead Chloride Have a Halide-Perovskite-Like Surface. Chemistry of Materials, 2021, 33, 9270-9284.	3.2	6
8	Sub-Bandgap Optical Modulation of Quantum Dot Blinking Statistics. Journal of Physical Chemistry Letters, 2020, 11, 6404-6412.	2.1	8
9	Glycol ether additives control the size of PbS nanocrystals at reaction completion. Journal of Materials Chemistry C, 2020, 8, 12068-12074.	2.7	7
10	Controlling Cluster Intermediates Enables the Synthesis of Small PbS Nanocrystals with Narrow Ensemble Line Widths. Chemistry of Materials, 2020, 32, 4083-4094.	3.2	23
11	PbS Nanocrystals Made with Excess PbCl ₂ Have an Intrinsic Shell that Reduces Their Stokes Shift. Journal of Physical Chemistry Letters, 2019, 10, 5897-5901.	2.1	12
12	Triplet-Fusion Upconversion Using a Rigid Tetracene Homodimer. Journal of Physical Chemistry Letters, 2019, 10, 7463-7469.	2.1	37
13	Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature Biomedical Engineering, 2017, 1, .	11.6	490
14	Searching for "Defect-Tolerant―Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chemistry of Materials, 2017, 29, 4667-4674.	3.2	275
15	Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion. ACS Nano, 2017, 11, 7848-7857.	7.3	130
16	Methylammonium Bismuth Iodide as a Leadâ€Free, Stable Hybrid Organic–Inorganic Solar Absorber. Chemistry - A European Journal, 2016, 22, 2605-2610.	1.7	312
17	PbS Nanocrystal Emission Is Governed by Multiple Emissive States. Nano Letters, 2016, 16, 6070-6077.	4.5	71
18	Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nature Communications, 2016, 7, 12749.	5.8	209

MARK W B WILSON

#	Article	IF	CITATIONS
19	Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nature Photonics, 2016, 10, 31-34.	15.6	418
20	Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nature Chemistry, 2016, 8, 16-23.	6.6	308
21	Identifying and Eliminating Emissive Subâ€bandgap States in Thin Films of PbS Nanocrystals. Advanced Materials, 2015, 27, 4481-4486.	11.1	77
22	Investigation of Bismuth Triiodide (Bil ₃) for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2015, 6, 4297-4302.	2.1	176
23	A transferable model for singlet-fission kinetics. Nature Chemistry, 2014, 6, 492-497.	6.6	402
24	Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nature Materials, 2014, 13, 1039-1043.	13.3	235
25	Triplet Dynamics in Pentacene Crystals: Applications to Fission ensitized Photovoltaics. Advanced Materials, 2014, 26, 919-924.	11.1	62
26	Deconstructing the photon stream from single nanocrystals: from binning to correlation. Chemical Society Reviews, 2014, 43, 1287-1310.	18.7	73
27	Temperature-Independent Singlet Exciton Fission in Tetracene. Journal of the American Chemical Society, 2013, 135, 16680-16688.	6.6	198
28	Recombination Dynamics of Charge Pairs in a Push–Pull Polyfluorene-Derivative. Journal of Physical Chemistry B, 2013, 117, 4649-4653.	1.2	30
29	Singlet Exciton Fission in Polycrystalline Pentacene: From Photophysics toward Devices. Accounts of Chemical Research, 2013, 46, 1330-1338.	7.6	230
30	In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Communications, 2012, 3, 1019.	5.8	165
31	Excitons and charges at organic semiconductor heterojunctions. Faraday Discussions, 2012, 155, 339-348.	1.6	38
32	Singlet Exciton Fission-Sensitized Infrared Quantum Dot Solar Cells. Nano Letters, 2012, 12, 1053-1057.	4.5	200
33	Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene. Journal of the American Chemical Society, 2011, 133, 11830-11833.	6.6	394
34	Photophysics of pentacene thin films: The role of exciton fission and heating effects. Physical Review B, 2011, 84, .	1.1	114
35	Exciton Fission and Charge Generation via Triplet Excitons in Pentacene/C ₆₀ Bilayers. Journal of the American Chemical Society, 2010, 132, 12698-12703.	6.6	295
36	Saturation of the Photoluminescence at Few-Exciton Levels in a Single-Walled Carbon Nanotube under Ultrafast Excitation. Physical Review Letters, 2010, 104, 017401.	2.9	54

MARK W B WILSON

#	Article	IF	CITATIONS
37	Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Coreâ^'shell Nanostructures. Journal of Physical Chemistry C, 2009, 113, 18515-18522.	1.5	85
38	Loss determination in microsphere resonators by phase-shift cavity ring-down measurements. Optics Express, 2008, 16, 13158.	1.7	28
39	Vaporâ€Phase Deposition of Highly Luminescent Embedded Perovskite Nanocrystals. Advanced Optical Materials, 0, , 2102809.	3.6	1