Boyang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333283/publications.pdf Version: 2024-02-01

ROVANC YU

#	Article	IF	CITATIONS
1	Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy, 2022, 93, 106795.	16.0	31
2	Thermosensitive-CsI3-crystal-driven high-power Iâ^'/I3â^' thermocells. Cell Reports Physical Science, 2022, 3, 100737.	5.6	12
3	Liquid-state thermocells for low-grade heat harvesting. , 2022, , 141-162.		1
4	Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting. Joule, 2021, 5, 768-779.	24.0	113
5	Simultaneous Solar Steam and Electricity Generation from Synergistic Salinityâ€Temperature Gradient. Advanced Energy Materials, 2021, 11, 2100481.	19.5	42
6	Chargeâ€Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Advanced Materials, 2021, 33, e2100141.	21.0	37
7	High-efficiency solar heat storage enabled by adaptive radiation management. Cell Reports Physical Science, 2021, 2, 100533.	5.6	15
8	Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. Journal of Materials Chemistry A, 2021, 9, 26119-26126.	10.3	17
9	Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science, 2020, 370, 342-346.	12.6	289
10	P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019, 57, 473-479.	16.0	89
11	All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting. Research, 2019, 2019, 2460953.	5.7	18
12	Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy, 2018, 48, 569-574.	16.0	63
13	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	10.3	75
14	Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nature Communications, 2018, 9, 5146.	12.8	255