Uros Cvelbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332737/publications.pdf Version: 2024-02-01

		61977	74160
213	7,232	43	75
papers	citations	h-index	g-index
217	217	217	7686
all docs	docs citations	times ranked	citing authors

LIDOS CVELBAD

#	Article	IF	CITATIONS
1	Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 2011, 86, 1468-1475.	10.2	579
2	A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Communications Biology, 2021, 4, 70.	4.4	261
3	Surface modification of polyester by oxygen―and nitrogenâ€plasma treatment. Surface and Interface Analysis, 2008, 40, 1444-1453.	1.8	249
4	Copper oxide nanowires: a review of growth. Nanotechnology, 2012, 23, 194001.	2.6	210
5	Spontaneous Growth of Superstructure <i>α</i> â€Fe ₂ O ₃ Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma. Small, 2008, 4, 1610-1614.	10.0	193
6	Plasma nanoscience: setting directions, tackling grand challenges. Journal Physics D: Applied Physics, 2011, 44, 174001.	2.8	172
7	A Method for the Rapid Synthesis of Large Quantities of Metal Oxide Nanowires at Low Temperatures. Advanced Materials, 2005, 17, 2138-2142.	21.0	164
8	The future for plasma science and technology. Plasma Processes and Polymers, 2019, 16, 1800118.	3.0	160
9	Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum, 2009, 84, 83-85.	3.5	133
10	From nucleation to nanowires: a single-step process in reactive plasmas. Nanoscale, 2010, 2, 2012.	5.6	114
11	Long-Range Ordering of Oxygen-Vacancy Planes in α-Fe ₂ O ₃ Nanowires and Nanobelts. Chemistry of Materials, 2008, 20, 3224-3228.	6.7	112
12	Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic― Decontamination. Toxins, 2017, 9, 151.	3.4	101
13	Nanowire sensor response to reactive gas environment. Applied Physics Letters, 2008, 92, .	3.3	99
14	The Role of Crystallinity on Polymer Interaction with Oxygen Plasma. Plasma Processes and Polymers, 2009, 6, 667-675.	3.0	99
15	Photoelectrochemical activity of as-grown, α-Fe ₂ O ₃ nanowire array electrodes for water splitting. Nanotechnology, 2012, 23, 194009.	2.6	95
16	Selective Plasma Etching of Polymeric Substrates for Advanced Applications. Nanomaterials, 2016, 6, 108.	4.1	93
17	Behaviour of oxygen atoms near the surface of nanostructured Nb2O5. Journal Physics D: Applied Physics, 2007, 40, 2300-2303.	2.8	88
18	Increased surface roughness by oxygen plasma treatment of graphite/polymer composite. Applied Surface Science, 2003, 210, 255-261.	6.1	85

#	Article	IF	CITATIONS
19	Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. Journal Physics D: Applied Physics, 2014, 47, 335402.	2.8	83
20	Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71, 132-144.	11.4	82
21	Plasma-induced selectivity in bone cancer cells death. Free Radical Biology and Medicine, 2017, 110, 72-80.	2.9	82
22	Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 2020, 7, .	11.3	82
23	The creation of electric wind due to the electrohydrodynamic force. Nature Communications, 2018, 9, 371.	12.8	73
24	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	3.0	73
25	Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, 4, .	11.3	72
26	Towards large-scale in free-standing graphene and N-graphene sheets. Scientific Reports, 2017, 7, 10175.	3.3	71
27	Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. Journal Physics D: Applied Physics, 2006, 39, 3799-3804.	2.8	67
28	Non-thermal plasma technology for the development of antimicrobial surfaces: a review. Journal Physics D: Applied Physics, 2016, 49, 204002.	2.8	65
29	N-Graphene Nanowalls via Plasma Nitrogen Incorporation and Substitution: The Experimental Evidence. Nano-Micro Letters, 2020, 12, 53.	27.0	65
30	Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum, 2007, 82, 224-227.	3.5	62
31	Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma–surface interactions. Nanotechnology, 2008, 19, 405605.	2.6	61
32	The influence of substrate material on bacteria sterilization in an oxygen plasma glow discharge. Journal Physics D: Applied Physics, 2006, 39, 3487-3493.	2.8	60
33	Effective Fungal Spore Inactivation with an Environmentally Friendly Approach Based on Atmospheric Pressure Air Plasma. Environmental Science & Technology, 2019, 53, 1893-1904.	10.0	59
34	Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 369-374.	2.1	56
35	Oriented Carbon Nanostructures by Plasma Processing: Recent Advances and Future Challenges. Micromachines, 2018, 9, 565.	2.9	56
36	Studies on antibacterial dressings obtained by fluorinated post-discharge plasma. International Journal of Pharmaceutics, 2009, 367, 155-161.	5.2	55

#	Article	IF	CITATIONS
37	Formation of functional groups on graphite during oxygen plasma treatment. Applied Surface Science, 2006, 253, 1861-1865.	6.1	54
38	An Iron Catalytic Probe for Determination of the O-atom Density in an Ar/O2 Afterglow. Plasma Chemistry and Plasma Processing, 2006, 26, 103-117.	2.4	53
39	Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli. Journal of Applied Physics, 2007, 101, 103305.	2.5	50
40	Safety aspects of atmospheric pressure helium plasma jet operation on skin: In vivo study on mouse skin. PLoS ONE, 2017, 12, e0174966.	2.5	49
41	Towards large-scale plasma-assisted synthesis of nanowires. Journal Physics D: Applied Physics, 2011, 44, 174014.	2.8	48
42	Engineering of Composite Organosilicon Thin Films with Embedded Silver Nanoparticles via Atmospheric Pressure Plasma Process for Antibacterial Activity. Plasma Processes and Polymers, 2014, 11, 921-930.	3.0	48
43	Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Materials Letters, 2015, 149, 95-99.	2.6	46
44	Rapid surface functionalization of poly(ethersulphone) foils using a highly reactive oxygen-plasma treatment. Surface and Interface Analysis, 2007, 39, 476-481.	1.8	44
45	Influence of a sample surface on single electrode atmospheric plasma jet parameters. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 103-104, 124-130.	2.9	44
46	Oxygen plasma functionalization of poly(p-phenilene sulphide). Applied Surface Science, 2007, 253, 8669-8673.	6.1	43
47	Degradation of <i>Staphylococcus aureus</i> bacteria by neutral oxygen atoms. Journal of Applied Physics, 2009, 106, .	2.5	43
48	Rheology and pressure–volume–temperature behavior of the thermoplastic poly(acrylonitrile-butadiene-styrene)-modified epoxy-DDS system during reaction induced phase separation. Soft Matter, 2011, 7, 7248.	2.7	43
49	Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, 10, 17494-17511.	5.6	43
50	A diagnostic method for real-time measurements of the density of nitrogen atoms in the postglow of an Ar–N2 discharge using a catalytic probe. Journal of Applied Physics, 2005, 97, 103308.	2.5	42
51	Control of morphology and nucleation density of iron oxide nanostructures by electric conditions on iron surfaces exposed to reactive oxygen plasmas. Applied Physics Letters, 2009, 94, 211502.	3.3	42
52	Mycotoxin Decontamination Efficacy of Atmospheric Pressure Air Plasma. Toxins, 2019, 11, 219.	3.4	40
53	Advanced Carbon–Nickel Sulfide Hybrid Nanostructures: Extending the Limits of Battery-Type Electrodes for Redox-Based Supercapacitor Applications. ACS Applied Materials & Interfaces, 2021, 13, 20559-20572.	8.0	39
54	Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. Journal of Hazardous Materials, 2021, 403, 123593.	12.4	38

#	Article	IF	CITATIONS
55	Stabilization of liquid instabilities with ionized gas jets. Nature, 2021, 592, 49-53.	27.8	37
56	Characterization of oxygen plasma with a fiber optic catalytic probe and determination of recombination coefficients. IEEE Transactions on Plasma Science, 2005, 33, 834-837.	1.3	35
57	Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistry. Journal of Physical Chemistry C, 2013, 117, 23198-23207.	3.1	35
58	Hydrothermal Synthesis of Rare-Earth Modified Titania: Influence on Phase Composition, Optical Properties, and Photocatalytic Activity. Materials, 2019, 12, 713.	2.9	35
59	Selective oxygen plasma etching of coatings. IEEE Transactions on Plasma Science, 2005, 33, 236-237.	1.3	34
60	Comparison of TALIF and catalytic probes for the determination of nitrogen atom density in a nitrogen plasma afterglow. Journal Physics D: Applied Physics, 2009, 42, 055204.	2.8	34
61	Recent advances in vacuum sciences and applications. Journal Physics D: Applied Physics, 2014, 47, 153001.	2.8	33
62	Reversible Carrierâ€Type Transitions in Gasâ€Sensing Oxides and Nanostructures. ChemPhysChem, 2010, 11, 3704-3712.	2.1	32
63	Multiple vs. single harmonics AC-driven atmospheric plasma jet. Europhysics Letters, 2014, 106, 25001.	2.0	31
64	Production of N-graphene by microwave N ₂ -Ar plasma. Journal Physics D: Applied Physics, 2016, 49, 055307.	2.8	31
65	Formation of vertically oriented graphenes: what are the key drivers of growth?. 2D Materials, 2018, 5, 044002.	4.4	31
66	Treatment of Hexatriacontane by Ar–O ₂ Remote Plasma: Formation of the Active Species. Plasma Processes and Polymers, 2009, 6, S198.	3.0	30
67	Advances in Ultra Low Dielectric Constant Ordered Porous Materials. Electrochemical Society Interface, 2011, 20, 39-46.	0.4	30
68	Effect of Cold Plasma on Glial Cell Morphology Studied by Atomic Force Microscopy. PLoS ONE, 2015, 10, e0119111.	2.5	30
69	Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite. Composites Science and Technology, 2013, 81, 54-60.	7.8	29
70	Characterization of a DC-driven microplasma between a capillary tube and water surface. Europhysics Letters, 2013, 102, 15002.	2.0	29
71	Density of O-atoms in an Afterglow Reactor During Treatment of Wool. Plasma Chemistry and Plasma Processing, 2007, 27, 404-413.	2.4	28
72	Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. Reviews of Modern Plasma Physics, 2018, 2, 1.	4.1	28

#	Article	IF	CITATIONS
73	Low-temperature low-power PECVD synthesis of vertically aligned graphene. Nanotechnology, 2020, 31, 395604.	2.6	28
74	Growth dynamics of copper oxide nanowires in plasma at low pressures. Journal of Applied Physics, 2015, 117, .	2.5	27
75	Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Science and Technology, 2019, 28, 084002.	3.1	27
76	Single-Crystalline Metal Oxide Nanostructures Synthesized by Plasma-Enhanced Thermal Oxidation. Nanomaterials, 2019, 9, 1405.	4.1	26
77	A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures. Applied Surface Science, 2021, 566, 150619.	6.1	26
78	Reusable Au/Pd-coated chestnut-like copper oxide SERS substrates with ultra-fast self-recovery. Applied Surface Science, 2020, 517, 146205.	6.1	25
79	Correlation of Morphology and Viscoelastic Properties of Partially Biodegradable Polymer Blends Based on Polyamide 6 and Polylactide Copolyester. Polymer-Plastics Technology and Engineering, 2012, 51, 1432-1442.	1.9	24
80	Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors. Physics of Plasmas, 2014, 21, .	1.9	24
81	Effect of Dispersion Solvent on the Deposition of PVP-Silver Nanoparticles onto DBD Plasma-Treated Polyamide 6,6 Fabric and Its Antimicrobial Efficiency. Nanomaterials, 2020, 10, 607.	4.1	24
82	Hydrophilic to hydrophobic: Ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Applied Surface Science, 2022, 581, 152276.	6.1	24
83	Catalytic probes with nanostructured surface for gas/discharge diagnostics: a study of a probe signal behaviour. Journal Physics D: Applied Physics, 2008, 41, 115201.	2.8	23
84	Kinetics of the initial stage of silicon surface oxidation: Deal–Grove or surface nucleation?. Applied Physics Letters, 2009, 95, 021502.	3.3	23
85	Control of ion density distribution by magnetic traps for plasma electrons. Journal of Applied Physics, 2012, 112, 073302.	2.5	23
86	Characterization and global modelling of low-pressure hydrogen-based RF plasmas suitable for surface cleaning processes. Journal Physics D: Applied Physics, 2013, 46, 475206.	2.8	23
87	Environmentally Friendly Processing Technology for Engineering Silicon Nanocrystals in Water with Laser Pulses. Journal of Physical Chemistry C, 2016, 120, 18822-18830.	3.1	23
88	Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering. Biomaterials Science, 2016, 4, 1454-1461.	5.4	23
89	Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Scientific Reports, 2018, 8, 8252.	3.3	23
90	Structure and photoluminescence properties of MoO3â^'/graphene nanoflake hybrid nanomaterials formed via surface growth. Applied Surface Science, 2019, 480, 1054-1062.	6.1	23

#	Article	IF	CITATIONS
91	Antimicrobial Efficacy of Low Concentration PVP-Silver Nanoparticles Deposited on DBD Plasma-Treated Polyamide 6,6 Fabric. Coatings, 2019, 9, 581.	2.6	22
92	The effect of plasma treatment on structure and properties of poly(1-butene) surface. European Polymer Journal, 2012, 48, 866-874.	5.4	21
93	Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet. European Physical Journal D, 2018, 72, 1.	1.3	21
94	Cold atmospheric pressure plasmaâ€assisted removal of aflatoxin B ₁ from contaminated corn kernels. Plasma Processes and Polymers, 2021, 18, .	3.0	21
95	Engineering the penetration depth of nearly guided wave surface plasmon resonance towards application in bacterial cells monitoring. Sensors and Actuators B: Chemical, 2021, 345, 130338.	7.8	21
96	Carbon nanofiber growth in plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2008, 104, .	2.5	20
97	Functionalization of polylactic acid through direct melt polycondensation in the presence of tricarboxylic acid. Journal of Applied Polymer Science, 2011, 122, 1275-1285.	2.6	20
98	Plasma as a tool for enhancing insulation properties of polymer composites. RSC Advances, 2015, 5, 37853-37858.	3.6	20
99	High sensitivity of a carbon nanowall-based sensor for detection of organic vapours. RSC Advances, 2015, 5, 90515-90520.	3.6	20
100	Effect of Phase Arrangement on Solid State Mechanical and Thermal Properties of Polyamide 6/Polylactide Based Co-polyester Blends. Journal of Macromolecular Science - Physics, 2012, 51, 982-1001.	1.0	19
101	Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. EPJ Applied Physics, 2016, 75, 24710.	0.7	19
102	Targeted plasma functionalization of titanium inhibits polymicrobial biofilm recolonization and stimulates cell function. Applied Surface Science, 2019, 487, 1176-1188.	6.1	19
103	Antimicrobial Efficiency and Surface Interactions of Quaternary Ammonium Compound Absorbed on Dielectric Barrier Discharge (DBD) Plasma Treated Fiber-Based Wiping Materials. ACS Applied Materials & Interfaces, 2020, 12, 298-311.	8.0	19
104	Synthesis of antibacterial composite coating containing nanocapsules in an atmospheric pressure plasma. Materials Science and Engineering C, 2021, 119, 111496.	7.3	19
105	Characterization of hydrogen plasma with a fiber optics catalytic probe. Thin Solid Films, 2005, 475, 12-16.	1.8	18
106	Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers, 2022, 14, 1138.	4.5	18
107	AES characterization of thin oxide films growing on Al foil during oxygen plasma treatment. Surface and Interface Analysis, 2004, 36, 986-988.	1.8	17
108	Argon-Oxygen Post-Discharge Treatment of Hexatriacontane: Heat Transfer between Gas Phase and Sample. Key Engineering Materials, 0, 373-374, 421-425.	0.4	17

#	Article	IF	CITATIONS
109	Advancing Li-ion storage performance with hybrid vertical carbon/Ni3S2-based electrodes. Journal of Energy Chemistry, 2022, 67, 8-18.	12.9	17
110	Degradation of Bacteria by Weakly Ionized Highly Dissociated Radio-Frequency Oxygen Plasma. IEEE Transactions on Plasma Science, 2008, 36, 1300-1301.	1.3	16
111	Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples. Plasma Sources Science and Technology, 2009, 18, 034002.	3.1	16
112	Atmospheric plasma spray pyrolysis of lithiated nickel-manganese-cobalt oxides for cathodes in lithium ion batteries. Chemical Engineering Science, 2017, 174, 302-310.	3.8	16
113	Solvent-dependent structures and photoluminescence of WO3- nanomaterials grown in nonaqueous solutions. Journal of Alloys and Compounds, 2021, 854, 157249.	5.5	16
114	Bonding process efficiency and Al-flake orientation during the curing of powder coatings. Progress in Organic Coatings, 2005, 54, 113-119.	3.9	15
115	Sub-oxide-to-metallic, uniformly-nanoporous crystalline nanowires by plasma oxidation and electron reduction. Chemical Communications, 2012, 48, 11070.	4.1	15
116	Investigation on the thermal and crystallization behavior of high density polyethylene/acrylonitrile butadiene rubber blends and their composites. Polymer Engineering and Science, 2015, 55, 1203-1210.	3.1	15
117	Novel biomaterials: plasma-enabled nanostructures and functions. Journal Physics D: Applied Physics, 2016, 49, 273001.	2.8	15
118	Corrosion studies of plasma modified magnesium alloy in simulated body fluid (SBF) solutions. Surface and Coatings Technology, 2020, 385, 125434.	4.8	15
119	Inductively Coupled RF Oxygen Plasma Studied by Spatially Resolved Optical Emission Spectroscopy. IEEE Transactions on Plasma Science, 2008, 36, 1368-1369.	1.3	14
120	Improving sensing properties of entangled carbon nanotube-based gas sensors by atmospheric plasma surface treatment. Microelectronic Engineering, 2020, 232, 111403.	2.4	14
121	Prospects for microwave plasma synthesized N-graphene in secondary electron emission mitigation applications. Scientific Reports, 2020, 10, 13013.	3.3	14
122	Labelâ€Free Mycotoxin Raman Identification by Highâ€Performing Plasmonic Vertical Carbon Nanostructures. Small, 2021, 17, e2103677.	10.0	14
123	Modes of nanotube growth in plasmas and reasons for single-walled structure. Journal Physics D: Applied Physics, 2008, 41, 132004.	2.8	13
124	Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion?. IEEE Transactions on Plasma Science, 2018, 46, 230-238.	1.3	13
125	Efficient silver nanoparticles deposition method on DBD plasma-treated polyamide 6,6 for antimicrobial textiles. IOP Conference Series: Materials Science and Engineering, 0, 460, 012007.	0.6	13
126	Chemical, Thermo-Mechanical and Antimicrobial Properties of DBD Plasma Treated Disinfectant-Impregnated Wipes during Storage. Polymers, 2019, 11, 1769.	4.5	13

#	Article	IF	CITATIONS
127	N-Graphene-Metal-Oxide(Sulfide) hybrid Nanostructures: Single-step plasma-enabled approach for energy storage applications. Chemical Engineering Journal, 2022, 430, 133153.	12.7	13
128	Hemocompatible Poly(ethylene terephthalate) Polymer Modified via Reactive Plasma Treatment. Japanese Journal of Applied Physics, 2011, 50, 08JF02.	1.5	12
129	Smallest Bimetallic CoPt ₃ Superparamagnetic Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 4039-4046.	4.6	12
130	Plasma-enabled sensing of urea and related amides on polyaniline. Frontiers of Chemical Science and Engineering, 2016, 10, 265-272.	4.4	12
131	Concept of a Magnetically Enhanced Vacuum Arc Thruster With Controlled Distribution of Ion Flux. IEEE Transactions on Plasma Science, 2018, 46, 304-310.	1.3	12
132	Plasma produced photoluminescent molybdenum sub-oxide nanophase materials. Journal of Alloys and Compounds, 2018, 765, 1167-1173.	5.5	12
133	Nanostructure conversion and enhanced photoluminescence of vacancy engineered substoichiometric tungsten oxide nanomaterials. Materials Chemistry and Physics, 2021, 262, 124311.	4.0	12
134	Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines. Scientific Reports, 2021, 11, 17521.	3.3	12
135	Deterministic Surface Growth of Single-Crystalline Iron Oxide Nanostructures in Nonequilibrium Plasma. Crystal Growth and Design, 2008, 8, 4347-4349.	3.0	11
136	Customizing electron confinement in plasma-assembled Si/AlN nanodots for solar cell applications. Physics of Plasmas, 2009, 16, 123504.	1.9	11
137	Nanoherding: Plasma-Chemical Synthesis and Electric-Charge-Driven Self Organization of SiO2 Nanodots. Journal of Physical Chemistry Letters, 2013, 4, 681-686.	4.6	11
138	Heterogeneous recombination of neutral oxygen atoms on niobium surface. Applied Surface Science, 2003, 211, 96-101.	6.1	10
139	HETEROGENEOUS RECOMBINATION OF O ATOMS ON METAL SURFACES. International Journal of Nanoscience, 2007, 06, 121-124.	0.7	10
140	Non-square-well potential profile and suppression of blinking in compositionally graded Cd1â^'xZnxSe/CdxZn1â^'xSe nanocrystals. Nanoscale, 2010, 2, 728.	5.6	10
141	Interaction of non-equilibrium oxygen plasma with sintered graphite. Applied Surface Science, 2013, 269, 33-36.	6.1	10
142	Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors by <i>n</i> -Butylamine Functionalization. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	10
143	Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Scientific Reports, 2015, 5, 13379.	3.3	10
144	TiN deposition and morphology control by scalable plasma-assisted surface treatments. Materials Chemistry and Physics, 2017, 188, 143-153.	4.0	10

#	Article	IF	CITATIONS
145	On diagnostics of annular-shape radio-frequency plasma jet operating in argon in atmospheric conditions. Plasma Sources Science and Technology, 2020, 29, 035027.	3.1	10
146	Graphene Flakes in Arc Plasma: Conditions for the Fast Single-Layer Growth. Graphene, 2016, 05, 81-89.	1.0	10
147	Influence of effective pumping speed on oxygen atom density in a plasma post-glow reactor. Vacuum, 2006, 80, 904-907.	3.5	9
148	Treatment and Stability of Sodium Hyaluronate Films in Low Temperature Inductively Coupled Ammonia Plasma. Plasma Chemistry and Plasma Processing, 2012, 32, 1075-1091.	2.4	9
149	Molecular Transport of Aromatic Solvents through Oil Palm Micro Fiber Filled Natural Rubber Composites: Role of Fiber Content and Interface Adhesion on Transport. Journal of Adhesion Science and Technology, 2012, 26, 271-288.	2.6	9
150	Built-In Charges and Photoluminescence Stability of 3D Surface-Engineered Silicon Nanocrystals by a Nanosecond Laser and a Direct Current Microplasma. Journal of Physical Chemistry C, 2013, 117, 10939-10948.	3.1	9
151	Plasma treatment for next-generation nanobiointerfaces. Biointerphases, 2015, 10, 029405.	1.6	9
152	Atmospheric Pressure Plasma Deposition of Organosilicon Thin Films by Direct Current and Radio-frequency Plasma Jets. Materials, 2020, 13, 1296.	2.9	9
153	In Situ Synthesis of Copper Nanoparticles on Dielectric Barrier Discharge Plasma-Treated Polyester Fabrics at Different Reaction pHs. ACS Applied Polymer Materials, 2022, 4, 3908-3918.	4.4	9
154	Interaction of Oxygen Plasma With Aluminium Substrates. IEEE Transactions on Plasma Science, 2008, 36, 868-869.	1.3	8
155	Plasma functionalization of titanium surface for repulsion of blood platelets. Surface and Coatings Technology, 2012, 211, 200-204.	4.8	8
156	Selective Plasma Etching of Polyphenolic Composite in O ₂ /Ar Plasma for Improvement of Material Tracking Properties. Plasma Processes and Polymers, 2016, 13, 737-743.	3.0	8
157	Microwave N ₂ -Ar plasmas applied for N-graphene post synthesis. Materials Research Express, 2018, 5, 095605.	1.6	8
158	Single-step synthesis of TiO2/WO3â^' hybrid nanomaterials in ethanoic acid: Structure and photoluminescence properties. Applied Surface Science, 2021, 562, 150180.	6.1	8
159	Plasma control of morpho-dimensional selectivity of hematite nanostructures. Applied Physics Letters, 2012, 100, 243103.	3.3	7
160	Plasma properties in a large-volume, cylindrical and asymmetric radio-frequency capacitively coupled industrial-prototype reactor. Journal Physics D: Applied Physics, 2013, 46, 075201.	2.8	7
161	Effective Control of the Arc Discharge-Generated Plasma Jet by Smartly Designed Magnetic Fields. IEEE Transactions on Plasma Science, 2014, 42, 2464-2465.	1.3	7
162	Mechanisms of hydrophobization of polymeric composites etched in CF ₄ plasma. Surface and Interface Analysis, 2017, 49, 334-339.	1.8	7

#	Article	IF	CITATIONS
163	Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review. Frontiers of Chemical Science and Engineering, 2019, 13, 427-443.	4.4	7
164	Selective Plasma Etching of Polymers and Polymer Matrix Composites. , 2019, , 241-259.		7
165	Atmospheric-Pressure Plasma Spray Deposition of Silver/HMDSO Nanocomposite on Polyamide 6,6 with Controllable Antibacterial Activity. AATCC Journal of Research, 2020, 7, 1-6.	0.6	7
166	Hemocompatible Poly(ethylene terephthalate) Polymer Modified via Reactive Plasma Treatment. Japanese Journal of Applied Physics, 2011, 50, 08JF02.	1.5	7
167	Tackling chemical etching and its mechanisms of polyphenolic composites in various reactive low temperature plasmas. RSC Advances, 2016, 6, 95120-95128.	3.6	6
168	Plasma-inspired biomaterials. Journal Physics D: Applied Physics, 2017, 50, 040201.	2.8	6
169	Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications. International Journal of Advanced Manufacturing Technology, 2019, 101, 927-938.	3.0	6
170	Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells – Relevance to Capsular Opacification. PLoS ONE, 2016, 11, e0165883.	2.5	6
171	Phase composition, morphology, properties and improved catalytic activity of hydrothermally-derived manganese-doped ceria nanoparticles. Nanotechnology, 2022, 33, 135709.	2.6	6
172	Degradation of bisphenol A and S in wastewater during cold atmospheric pressure plasma treatment. Science of the Total Environment, 2022, 837, 155707.	8.0	6
173	Calibration Approach for Gaseous Oxidized Mercury Based on Nonthermal Plasma Oxidation of Elemental Mercury. Analytical Chemistry, 2022, 94, 8234-8240.	6.5	6
174	Improvement of electrical conductivity of Cu/Ag glue joints by discharge cleaning. Vacuum, 2003, 71, 207-211.	3.5	5
175	Oxygen plasma etching of a two-component clear coating. Vacuum, 2005, 80, 189-192.	3.5	5
176	Transport coefficients for electron scattering in CF ₄ /Ar/O ₂ mixtures with a significant presence of F _x or CF _x radicals. Europhysics Letters, 2010, 91, 55001.	2.0	5
177	Interaction of Oxygen Species With Graphene and Pyrolytic-Graphite Surfaces. IEEE Transactions on Plasma Science, 2011, 39, 2812-2813.	1.3	5
178	Counter-propagating streamers in an atmospheric-pressure helium plasma jet. Journal Physics D: Applied Physics, 2017, 50, 205201.	2.8	5
179	Plasma effects on the bacteriaEscherichia colivia two evaluation methods. Plasma Science and Technology, 2017, 19, 075504.	1.5	5
180	Ascertaining the factors that influence the vapor sensor response: The entire case of MWCNT network sensor. Sensors and Actuators B: Chemical, 2019, 283, 478-486.	7.8	5

#	Article	IF	CITATIONS
181	Controlling oxygen vacancies of WO suboxides by ZnWO4 nanophase hybridization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114706.	3.5	5
182	Oriented Carbon Nanostructures from Plasma Reformed Resorcinol-Formaldehyde Polymer Gels for Gas Sensor Applications. Nanomaterials, 2020, 10, 1704.	4.1	5
183	Transparent elongation and compressive strain sensors based on aligned carbon nanowalls embedded in polyurethane. Sensors and Actuators A: Physical, 2020, 306, 111946.	4.1	5
184	Effects of tungsten doping on structure and photoluminescence of MoO3–x nanomaterials. Journal Physics D: Applied Physics, 2020, 53, 415109.	2.8	5
185	Tuned structures and enhanced photoluminescence of WO3- nanomaterials by TiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115516.	3.5	5
186	Imaging of the Asymmetric DC Discharge: Visualization to Adjust Plasma in the Novel PECVD Reactor. IEEE Transactions on Plasma Science, 2014, 42, 2564-2565.	1.3	4
187	The Influence of Discharge Capillary Size, Distance, and Gas Composition on the Non-Equilibrium State of Microplasma. Plasma Processes and Polymers, 2016, 13, 690-697.	3.0	4
188	Customization of Sn ₂ P ₂ S ₆ ferroelectrics by post-growth solid-state diffusion doping. Journal of Materials Chemistry C, 2020, 8, 9975-9985.	5.5	4
189	Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures. Carbon, 2021, 184, 82-90.	10.3	4
190	Atmospheric pressure plasma jet-mouse skin interaction: Mitigation of damages by liquid interface and gas flow control. Biointerphases, 2022, 17, 021004.	1.6	4
191	Tetragonal or monoclinic ZrO2 thin films from Zr-based glassy templates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	3
192	From nanoparticles to nanofilms: exploring effects of Zn addition for nanostructure modification and photoluminescence intensification of MoO _{3â^'<i>x</i>} nanomaterials. Journal Physics D: Applied Physics, 2020, 53, 095101.	2.8	3
193	Analysing Mouse Skin Cell Behaviour under a Non-Thermal kHz Plasma Jet. Applied Sciences (Switzerland), 2021, 11, 1266.	2.5	3
194	Plasma Damage Control: From Biomolecules to Cells and Skin. ACS Applied Materials & Interfaces, 2021, 13, 46303-46316.	8.0	3
195	Modeling of Electron Kinetics in BF ₃ . Acta Physica Polonica A, 2010, 117, 748-751.	0.5	3
196	Hybrid Carbon-Based Nanostructured Platforms for the Advanced Bioreactors. Journal of Nanoscience and Nanotechnology, 2015, 15, 10074-10090.	0.9	2
197	Double dielectric barrier (DBD) plasma-assisted deposition of chemical stabilized nanoparticles on polyamide 6,6 and polyester fabrics. IOP Conference Series: Materials Science and Engineering, 2017, 254, 102010.	0.6	2
198	Nanocarbon phase transformations controlled by solubility of carbon species in gold nanoparticles. Diamond and Related Materials, 2018, 88, 282-289.	3.9	2

#	Article	IF	CITATIONS
199	Helium atmospheric pressure plasma jet parameters and their influence on bacteria deactivation in a medium. European Physical Journal D, 2022, 76, 1.	1.3	2
200	Environmentally friendly plasma-based surface engineering technologies. Journal of Physics: Conference Series, 2010, 207, 012009.	0.4	1
201	Etching of Bacterial Capsule and Cell Wall by Oxygen Plasma Afterglow. IEEE Transactions on Plasma Science, 2011, 39, 2972-2973.	1.3	1
202	Investigation on band gap energy and effect of various surface plasma treatments on nano structured SnO2 semiconductor. , 2015, , .		1
203	Role of pressure in transport of F- ions in BF3 gas for technological applications. FME Transactions, 2015, 43, 168-172.	1.4	1
204	Broadband Microwave Signal Dissipation in Nanostructured Copper Oxide at Airâ€film Interface**. Electroanalysis, 2020, 32, 2795-2802.	2.9	1
205	Enhancing the Antimicrobial Efficacy of Polyester Fabric Impregnated with Silver Nanoparticles Using DBD Plasma Treatment. Materials Science Forum, 0, 1063, 91-97.	0.3	1
206	Simulation and Visualization of Self-Assembled Nanodevice Networks Synthesized via Plasma–Surface Interaction. IEEE Transactions on Plasma Science, 2008, 36, 866-867.	1.3	0
207	(Invited) Influence of Plasma Parameters on the Growth of Metal Oxide Nanowires. ECS Meeting Abstracts, 2010, , .	0.0	0
208	Plasma Treatment as a Way of Increasing the Selectivity of Carbon Nanotube Networks for Organic Vapor Sensing Elements. Key Engineering Materials, 2013, 543, 410-413.	0.4	0
209	Effect of dissipated power due to antenna resistive heating on E- to H-mode transition in inductively coupled oxygen plasma. Indian Journal of Physics, 2015, 89, 635-640.	1.8	0
210	(Invited) Plasma Deposition of Antibacterial Nano-Coatings on Polymeric Materials. ECS Transactions, 2017, 77, 53-61.	0.5	0
211	Modeling of the effect of radicals on plasmas used for etching in microelectronics. FME Transactions, 2016, 44, 105-108.	1.4	0
212	(Invited) Plasma Produced and Processed Multimaterials Based on Vertically Aligned Graphene Walls and Their Applications. ECS Meeting Abstracts, 2021, MA2021-02, 689-689.	0.0	0
213	(Invited) Stabilizing Effect of Impinging Plasma Jet on the Water Surface. ECS Meeting Abstracts, 2021, MA2021-02, 685-685.	0.0	0