
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333270/publications.pdf Version: 2024-02-01

ALEXANDER V NALIMKIN

#	Article	IF	CITATIONS
1	XPS study of silver and copper nanoparticles demonstrated selective anticancer, proapoptotic, and antibacterial properties. Surface and Interface Analysis, 2022, 54, 189-202.	1.8	8
2	Impact of iso/aliovalent dopants in ceria solid solutions for improved CO oxidation. Molecular Catalysis, 2022, 517, 112016.	2.0	1
3	Direct synthesis of tetraalkoxysilanes in a high-pressure mechanochemical reactor. Reaction Chemistry and Engineering, 2022, 7, 769-780.	3.7	6
4	Fabrication of a hollow sphere N,S co-doped bifunctional carbon catalyst for sustainable fixation of CO ₂ to cyclic carbonates. Green Chemistry, 2022, 24, 1673-1692.	9.0	42
5	Anionic Polymerization of Para-Diethynylbenzene: Synthesis of a Strictly Linear Polymer. Polymers, 2022, 14, 900.	4.5	3
6	Thiacalixarenes with Sulfur Functionalities at Lower Rim: Heavy Metal Ion Binding in Solution and 2D-Confined Space. International Journal of Molecular Sciences, 2022, 23, 2341.	4.1	7
7	Platinum crossâ€linked chitosan hydrogels synthesized in water saturated with CO 2 under high pressure. Journal of Applied Polymer Science, 2021, 138, 50006.	2.6	4
8	Enhancement of 1Tâ€MoS ₂ Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. ChemNanoMat, 2021, 7, 447-456.	2.8	11
9	Gd-Bi-M-Ce-O (M = Cu, Zr, Ni, Co, Mn) ceria-based solid solutions for low temperature CO oxidation. Ceramics International, 2021, 47, 8142-8149.	4.8	5
10	Silver nanoparticles doped with silver cations and stabilized with maleic acid copolymers: specific structure and antimicrobial properties. New Journal of Chemistry, 2021, 45, 14513-14521.	2.8	5
11	Thermal Stability and Catalytic Activity of the MnOx–CeO2 and the MnOx–ZrO2–CeO2 Highly Dispersed Materials in the Carbon Monoxide Oxidation Reaction. Inorganic Materials: Applied Research, 2021, 12, 468-476.	0.5	6
12	Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO2. Carbohydrate Polymers, 2021, 258, 117614.	10.2	10
13	Sm(Nd) doped ceria materials for multifunctional application. Ceramics International, 2021, 47, 22201-22208.	4.8	6
14	Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization. Gels, 2021, 7, 82.	4.5	17
15	Reductive Amidation without an External Hydrogen Source Using Rhodium on Carbon Matrix as a Catalyst. ChemCatChem, 2020, 12, 112-117.	3.7	9
16	Polyazomethine and polyphenylene based on 1,2-bis(4-acetylbenzyl)-o-carborane. Russian Chemical Bulletin, 2020, 69, 1138-1147.	1.5	7
17	A Mechanistic Study of CO Oxidation on New Catalysts CeFe0.5Sb1.5O6 and PrFe0.5Sb1.5O6 Using the X-ray Photoelectron Spectroscopy Method. Russian Journal of Inorganic Chemistry, 2020, 65, 592-596.	1.3	4
18	Silver Composites of Ultradisperse Polytetrafluoroethylene and Its Fractions in Supercritical Carbon Dioxide: Synthesis and Structural Study. Polymer Science - Series B, 2020, 62, 125-136.	0.8	2

#	Article	IF	CITATIONS
19	New Carbon Nanofiber Composite Materials Containing Lanthanides and Transition Metals Based on Electrospun Polyacrylonitrile for High Temperature Polymer Electrolyte Membrane Fuel Cell Cathodes. Polymers, 2020, 12, 1340.	4.5	11
20	The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions. Colloid and Polymer Science, 2020, 298, 1135-1148.	2.1	8
21	Chitosan aerogel containing silver nanoparticles: From metal-chitosan powder to porous material. Polymer Testing, 2020, 86, 106481.	4.8	17
22	A Study of the Surface of Polymer Film Components of Fenton Catalyst. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 75-81.	1.1	0
23	Silver/Chitosan Nanocomposites: Preparation and Characterization and Their Fungicidal Activity against Dairy Cattle Toxicosis Penicillium expansum. Journal of Fungi (Basel, Switzerland), 2020, 6, 51.	3.5	20
24	Ion-induced Auger electrons contrast on cross-beam systems. Semiconductor Science and Technology, 2019, 34, 124005.	2.0	3
25	Effect of Interaction of Bacterial Cellulose with Gold Nanoparticles Obtained by Metal Vapor Synthesis. Doklady Physical Chemistry, 2019, 488, 146-150.	0.9	4
26	Probing of complex carbon nanofiber paper as gas-diffusion electrode for high temperature polymer electrolyte membrane fuel cell. RSC Advances, 2019, 9, 257-267.	3.6	19
27	Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Polymer Engineering and Science, 2019, 59, 2479-2487.	3.1	27
28	Synthesis and Structure of New Pt(IV) Perfluorocarboxylate Complexes and Their Reactivity with Respect to Alkanes and Cycloalkanes. Russian Journal of Inorganic Chemistry, 2019, 64, 49-55.	1.3	2
29	Cardo Copolymers: A Friction–Chemical Structure Relationship. Journal of Friction and Wear, 2019, 40, 17-26.	0.5	4
30	The Antifriction Properties of Amorphous Poly(Arylene Ether Ketone) Copolymers with a Low Content of Cardo Groups. Journal of Friction and Wear, 2019, 40, 515-520.	0.5	2
31	Synthesis of TiH2 nanopowder via the Guen-Miller Flow-Levitation method and characterization. Journal of Alloys and Compounds, 2019, 778, 271-279.	5.5	22
32	INTERACTION IN POLYARYLATE – POLY(ARYLENE ETHER KETONE) MIXTURE AT HIGH-TEMPERATURE PROCESSING. ChemChemTech, 2019, 62, 147-154.	0.3	1
33	Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off. European Journal of Plant Pathology, 2018, 151, 57.	1.7	21
34	Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme. Monatshefte Für Chemie, 2018, 149, 1179-1188.	1.8	8
35	XPS study of structural transformations in some Ni complexes. Surface and Interface Analysis, 2018, 50, 1154-1157.	1.8	3
36	Mechanochemistry – a new powerful green approach to the direct synthesis of alkoxysilanes. Green Chemistry, 2018, 20, 1962-1969.	9.0	23

#	Article	IF	CITATIONS
37	Tribochemical Processes in a Phenol Formaldehyde Polymer Modified by Polyformaldehyde Copolymer. Journal of Friction and Wear, 2018, 39, 462-468.	0.5	1
38	Effect of the Chemical Atmosphere of the Thermolysis of the Complex PdAg2(OAc)4(HOAc)4 on the Formation of Active Centers in Pd–Ag/CeO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide. Kinetics and Catalysis, 2018, 59, 766-775.	1.0	3
39	Production of a Novel Material Based on a Collagen–Chitosan Composite and Ibuprofen in a Supercritical Medium. Doklady Physical Chemistry, 2018, 482, 130-133.	0.9	3
40	Bimetallic Au–Pt Nanocomposites in the CO Oxidation Reaction: New Synthetic Approach and Evolution in the Course of Catalysis. Doklady Chemistry, 2018, 483, 251-255.	0.9	0
41	Effect of the Chemical Structure of Heat-Resistant Thermoplastics on the Friction on Steel. Doklady Chemistry, 2018, 479, 58-63.	0.9	5
42	Influence of Ionizing Radiation on the Properties of a Nanodispersed PdO/CeO2 Catalyst in the Reaction of Low-Temperature Carbon Monoxide Oxidation. High Energy Chemistry, 2018, 52, 307-311.	0.9	0
43	Effect of the Molecular Weight of Polyarylene Ether Ketones on the Tribological Properties. Journal of Friction and Wear, 2018, 39, 114-120.	0.5	2
44	Perspective intermediate temperature ceria based catalysts for CO oxidation. Applied Catalysis B: Environmental, 2018, 236, 171-175.	20.2	26
45	Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action. Antibiotics, 2018, 7, 80.	3.7	43
46	Synthesis, structure, and properties of a Au/MnO x –CeO2 nanocatalyst for low-temperature oxidation of carbon monoxide. Inorganic Materials, 2017, 53, 406-412.	0.8	6
47	The development of hybrid materials that combine polyamides with thienothiophene units and inorganic objects. High Performance Polymers, 2017, 29, 704-707.	1.8	4
48	Organoelement Coatings on Glass as Precursors for Biochip Technologies. Macromolecular Symposia, 2017, 375, 1700025.	0.7	1
49	New star-like polydimethylsiloxanes: synthesis, properties, and application. Russian Chemical Bulletin, 2017, 66, 1094-1098.	1.5	17
50	Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. Journal of Nanostructure in Chemistry, 2017, 7, 249-258.	9.1	63
51	Structural and frictional peculiarities of nanocrystalline thermally expanded graphite particles sonicated in water and glycerol. Journal of Friction and Wear, 2017, 38, 202-207.	0.5	4
52	Coatings and surfactants based on oligovinylsiloxanes. Polymer Science - Series B, 2017, 59, 248-256.	0.8	3
53	Friction of ultrathin Si, F-containing coatings. Journal of Friction and Wear, 2017, 38, 259-264.	0.5	0
54	Surface modification of epoxy resin by amphiphilic fluoroorganosiloxane copolymers. Russian Chemical Bulletin, 2016, 65, 1116-1118.	1.5	0

#	Article	IF	CITATIONS
55	Study on tribological properties of the DV–FV polyarylate system. Journal of Friction and Wear, 2016, 37, 535-543.	0.5	1
56	Organosilicon fluoro-containing polymer brushes based on epoxy matrix: XPS analysis. Russian Chemical Bulletin, 2016, 65, 1072-1075.	1.5	3
57	Hybrid materials based on core-shell polyorganosilsesquioxanes modified with iron nanoparticles. Mendeleev Communications, 2016, 26, 187-190.	1.6	19
58	Tribochemical processes in epoxyorganic textolite–steel friction pair. Journal of Friction and Wear, 2016, 37, 15-22.	0.5	0
59	Effect of chemical structure of aramide and polyoxadiazole fibers on friction of organoplastics. Journal of Friction and Wear, 2016, 37, 351-357.	0.5	4
60	Evolution of active ingredients and catalytic properties of Pt-Sn/Al2O3 catalysts in the selective deoxygenation reaction of vegetable oils. Petroleum Chemistry, 2016, 56, 607-615.	1.4	9
61	The mechanism of chemical modification of artificial fibers based on cellulose derivatives. Polymer Science - Series B, 2016, 58, 347-350.	0.8	1
62	Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure. Applied Surface Science, 2016, 366, 365-371.	6.1	37
63	Au/Ce0.72Zr0.18Pr0.1O2 nanodisperse catalyst for oxidation of carbon monoxide. Russian Journal of Physical Chemistry A, 2016, 90, 166-172.	0.6	4
64	Metal-containing systems based on chitosan and a collagen-chitosan composite. Russian Chemical Bulletin, 2015, 64, 1663-1670.	1.5	11
65	X-ray photoelectron spectra of some Ni mono- and polynuclear complexes. Radiation Effects and Defects in Solids, 2015, 170, 218-228.	1.2	1
66	Mesoporic material from microcrystalline cellulose with gold nanoparticles: A new approach to metal-carrying polysaccharides. Mendeleev Communications, 2015, 25, 358-360.	1.6	13
67	Tribological studies for developing friction modifiers in the wheel–rail system. Journal of Friction and Wear, 2015, 36, 468-475.	0.5	6
68	Platinum, palladium, and rhodium nanoparticles on the surface of graphene flakes. Russian Journal of Inorganic Chemistry, 2015, 60, 709-714.	1.3	11
69	Gd Zr Ti Ce1––û€"O2 mesoporous catalysts for oxidation reactions. Surface Science, 2015, 642, L11-L15.	1.9	10
70	Fabrication and characterization of composites based on CeO2 nanoparticles and graphene. Inorganic Materials, 2015, 51, 848-853.	0.8	2
71	Functionalization and defunctionalization of single walled carbon nanotubes: Electrochemical and morphologic consequences. Journal of Electroanalytical Chemistry, 2015, 738, 27-34.	3.8	9
72	A comprehensive study of ultra-high molecular weight polyethylene modified by α-tocopherol after exposure to extremely high temperatures. Russian Chemical Bulletin, 2014, 63, 2527-2533.	1.5	1

#	Article	IF	CITATIONS
73	Effect of particle size and composition of powdered nanocrystalline molybdenum disulfide on its tribological behavior. Journal of Friction and Wear, 2014, 35, 330-338.	0.5	7
74	Dehydrogenation of isopropyl alcohol on modified cobalt catalyst. Russian Journal of Physical Chemistry A, 2014, 88, 768-773.	0.6	4
75	CuO–CeO2 composites: Synthesis from mixed sols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 159-164.	4.7	10
76	Fibroporous polytetrafluoroethylene modified with iron nanoparticles: Structure and electronic and magnetic properties. Russian Journal of Physical Chemistry A, 2013, 87, 985-991.	0.6	5
77	Diagnostics of gold-containing surgical-dressing materials with X-ray and synchrotron radiation. Journal of Surface Investigation, 2013, 7, 509-514.	0.5	5
78	Nature of initial acts of friction of ultrahigh molecular weight polyethylene with steel surface. Journal of Friction and Wear, 2013, 34, 120-128.	0.5	7
79	Active forms of oxygen as agents for electrochemical functionalization of SWCNTs. Carbon, 2013, 53, 188-196.	10.3	18
80	Ultradisperse catalytic layers supported by nanotubes and poly(diallyldimethylammonium)chloride polymer. Russian Journal of Electrochemistry, 2013, 49, 265-271.	0.9	5
81	Au-Ni and Au-Fe heterometallic systems: an X-ray photoelectron spectroscopy study. Russian Chemical Bulletin, 2013, 62, 2559-2566.	1.5	6
82	Dehydrogenation of isopropanol on a cerium-nickel catalyst. Russian Journal of Physical Chemistry A, 2012, 86, 1791-1794.	0.6	5
83	On the nature of "functional groups―in non-functionalized hypercrosslinked polystyrenes. Reactive and Functional Polymers, 2012, 72, 973-982.	4.1	47
84	Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis. Russian Journal of Physical Chemistry A, 2012, 86, 1602-1608.	0.6	7
85	Spectroscopic characterization of the electrochemical functionalization of single-walled carbon nanotubes in aqueous and organic media. Carbon, 2012, 50, 922-931.	10.3	8
86	Ion-induced modification of contact surfaces. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 669-673.	0.6	1
87	Reduced graphene oxide. Inorganic Materials, 2012, 48, 796-802.	0.8	128
88	Organometallic Pt precursor on graphite substrate: deposition from SC CO2, reduction and morphology transformation as revealed by SFM. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
89	The role of the medium in electrochemical functionalization and dispersion of carbon nanotubes. Russian Chemical Bulletin, 2011, 60, 1071-1077.	1.5	1
90	Effect of different types of radiation on the composition of poly(phosphazene) surface. Russian Chemical Bulletin, 2011, 60, 1657-1662.	1.5	0

#	Article	IF	CITATIONS
91	X-ray photoelectron and Mössbauer spectroscopy studies of bimetallic 57Fe-Pd nanocomposites prepared by metal-vapor synthesis. Russian Journal of Physical Chemistry A, 2011, 85, 636-645.	0.6	7
92	Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Russian Journal of Physical Chemistry A, 2011, 85, 1190-1195.	0.6	11
93	Regeneration of Pd/TiO2 catalyst deactivated in reductive CCl4 transformations by the treatment with supercritical CO2, ozone in supercritical CO2 or oxygen plasma. Journal of Supercritical Fluids, 2011, 58, 263-271.	3.2	21
94	Cyclohexane dehydrogenation on a copper-platinum catalyst. Russian Journal of Physical Chemistry A, 2010, 84, 1908-1912.	0.6	9
95	Categorization system of nanofillers to polymer composites. Journal of Friction and Wear, 2010, 31, 68-80.	0.5	18
96	Structured polyphenylenes as carriers of palladium nanoparticles used as selective hydrogenation catalysts. Polymer Science - Series B, 2010, 52, 49-56.	0.8	1
97	Synthesis of polyvinylpyrrolidone and its nanosilver-based polymer composites in supercritical carbon dioxide. Polymer Science - Series B, 2010, 52, 165-173.	0.8	12
98	Cu and Au nanocomposites in catalytic olefination reaction. Mendeleev Communications, 2010, 20, 200-202.	1.6	14
99	XPS/TEM characterisation of PtAu/C cathode electrocatalysts prepared by metal vapour synthesis. Surface and Interface Analysis, 2010, 42, 559-563.	1.8	29
100	Polyphenylens, Crossâ€Linked Through Pdâ€Carbene Complexes Formation, for Catalysis in Suzukiâ€Miyaura Reactions. Macromolecular Symposia, 2010, 296, 388-391.	0.7	3
101	DRIFT, XPS and XAS Investigation of Au–Ni/Al2O3 Synergetic Catalyst for Allylbenzene Isomerization. Topics in Catalysis, 2009, 52, 344-350.	2.8	30
102	New Antimicrobial Materials Based on Polymers With Nanostructured Surface Modified by Organic Fullerene[60] Derivatives. Plasma Processes and Polymers, 2009, 6, S85.	3.0	3
103	Gold- and silver-containing fibroporous polytetrafluoroethylene obtained under laser irradiation, supercritical carbon dioxide treatment, and metal-vapor synthesis. Nanotechnologies in Russia, 2009, 4, 834-840.	0.7	6
104	The influence of plasma chemical treatment of a platinum catalyst on its activity in the dehydrogenation of cyclohexane. Russian Journal of Physical Chemistry A, 2009, 83, 1720-1726.	0.6	8
105	Effect of X-rays on the surface composition of polyphosphazene: X-ray photoelectron spectroscopic study. Polymer Science - Series A, 2009, 51, 537-541.	1.0	4
106	X-Ray photoelectron spectra of iron trimethylacetate complexes. Russian Journal of Inorganic Chemistry, 2008, 53, 1614-1620.	1.3	5
107	X-ray photoelectron spectra of polynuclear manganese complexes. Russian Journal of Inorganic Chemistry, 2008, 53, 1929-1933.	1.3	7
108	X-ray photoelectron spectra and structure of iron polynuclear complexes. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 520-526.	0.6	1

#	Article	IF	CITATIONS
109	The effect of the chemical structure of polyfluorinated alcohols on the tribological properties of poly-e-caproamide. Journal of Friction and Wear, 2008, 29, 39-44.	0.5	0
110	Carbon dioxide in the surface layers of ultrahigh molecular weight polyethylene. Doklady Physical Chemistry, 2008, 419, 68-72.	0.9	8
111	ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE MODIFIED WITH SILVER NANOPARTICLES PREPARED BY METAL-VAPOUR SYNTHESIS AIP Conference Proceedings, 2008, , .	0.4	7
112	X-ray photoelectron spectra and electron structure of polynuclear cobalt complexes. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 200-203.	1.7	82
113	X-ray photoelectron spectra and structure of composites prepared via deposition of Au, Ni, and Au + Ni nanoparticles on SiO2 from colloidal solutions in triethylamine. Inorganic Materials, 2007, 43, 381-385.	0.8	21
114	Complexes of cobalt(II) halides with 2-(1H-pyrazol-1-yl)-4(3H)-pyrimidinone. Russian Journal of Inorganic Chemistry, 2007, 52, 1527-1529.	1.3	0
115	X-ray photoelectron spectra and structure of polynuclear nickel complexes. Russian Journal of Inorganic Chemistry, 2007, 52, 1781-1785.	1.3	8
116	An X-ray photoelectron spectroscopy study of the effect of sulfur compounds on antiwear properties of diesel fuels. Petroleum Chemistry, 2007, 47, 425-429.	1.4	0
117	An XPS study of the synergetic effect of gold and nickel supported on SiO2 in the catalytic isomerization of allylbenzene. Mendeleev Communications, 2007, 17, 268-270.	1.6	25
118	Fluorination of Carbon Nanostructures and Their Comparative Investigation by XPS and XAES Spectroscopy. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 287-296.	2.1	9
119	X-ray photoelectron spectra of cobalt trimethylacetates. Doklady Chemistry, 2006, 411, 234-239.	0.9	6
120	Relationship between the C KVV Auger line shape and layered structure of graphite. Applied Surface Science, 2005, 245, 128-134.	6.1	13
121	NIST data resources for surface analysis by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 1097-1102.	1.7	41
122	X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diamond and Related Materials, 2000, 9, 1904-1907.	3.9	462
123	An XPS study of compositional changes induced by argon ion bombardment of the LaPO4 surface. Vacuum, 1996, 47, 67-71.	3.5	31
124	The effects of 6 keV Ar+ ion bombardment on the surface composition of simple and complex titanium oxides. Vacuum, 1995, 46, 363-368.	3.5	7
125	Composition and chemical state of titanium nitride films obtained by different methods. Surface and Coatings Technology, 1994, 70, 9-17.	4.8	23
126	XPS studies of natural monazite and relative compounds under ion bombardment. Applied Surface Science, 1993, 72, 307-312.	6.1	11