Yeonung Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332677/publications.pdf

Version: 2024-02-01

279798 377865 1,391 34 23 34 h-index g-index citations papers 34 34 34 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-accuracy rebar position detection using deep learning–based frequency-difference electrical resistance tomography. Automation in Construction, 2022, 135, 104116.	9.8	11
2	Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes. Journal of Building Engineering, 2021, 34, 101880.	3.4	19
3	Normal and anomalous self-healing mechanism of crystalline calcium silicate hydrates. Cement and Concrete Research, 2021, 142, 106356.	11.0	15
4	Detecting embedded rebar in cement mortar by frequency-difference electrical resistance tomography. Automation in Construction, 2021, 132, 103974.	9.8	4
5	Heat-Induced Acceleration of Pozzolanic Reaction Under Restrained Conditions and Consequent Structural Modification. Materials, 2020, 13, 2950.	2.9	10
6	Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cement and Concrete Composites, 2020, 112, 103688.	10.7	60
7	Importance of Cation Species during Sulfate Resistance Tests for Alkali-Activated FA/GGBFS Blended Mortars. Materials, 2019, 12, 3547.	2.9	6
8	The cation-dependent effects of formate salt additives on the strength and microstructure of CaO-activated fly ash binders. Construction and Building Materials, 2019, 194, 92-101.	7.2	24
9	Pozzolanic reaction on alkali-activated Class F fly ash for ambient condition curable structural materials. Construction and Building Materials, 2019, 218, 235-244.	7.2	27
10	High-volume use of limestone in ultra-high performance fiber-reinforced concrete for reducing cement content and autogenous shrinkage. Construction and Building Materials, 2019, 213, 292-305.	7.2	56
11	Local Ca-structure variation and microstructural characteristics on one-part activated slag system with various activators. Cement and Concrete Composites, 2019, 102, 1-13.	10.7	11
12	The Effect of Elevated Curing Temperatures on High Ye'elimite Calcium Sulfoaluminate Cement Mortars. Materials, 2019, 12, 1072.	2.9	33
13	A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG. Construction and Building Materials, 2018, 169, 648-661.	7.2	84
14	The effect of water and gypsum content on strÃ t ingite formation in calcium sulfoaluminate-belite cement pastes. Construction and Building Materials, 2018, 166, 712-722.	7.2	80
15	The use of limestone to replace physical filler of quartz powder in UHPFRC. Cement and Concrete Composites, 2018, 94, 238-247.	10.7	53
16	A Feasibility Study on the Application of Basic Oxygen Furnace (BOF) Steel Slag for Railway Ballast Material. Sustainability, 2018, 10, 284.	3.2	29
17	Recycling of limestone fines using Ca(OH)2- and Ba(OH)2-activated slag systems for eco-friendly concrete brick production. Construction and Building Materials, 2018, 185, 275-284.	7.2	23
18	Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2. Cement and Concrete Research, 2018, 111, 147-156.	11.0	48

#	Article	IF	CITATIONS
19	Tensile Bond Characteristics between Underwater Coating Materials and Concrete Substrate. Journal of Korean Society of Coastal and Ocean Engineers, 2018, 30, 298-305.	0.4	5
20	Sustainable sulfur composites with enhanced strength and lightweightness using waste rubber and fly ash. Construction and Building Materials, 2017, 135, 650-664.	7.2	27
21	Strength development and microstructural characteristics of barium hydroxide-activated ground granulated blast furnace slag. Cement and Concrete Composites, 2017, 79, 34-44.	10.7	32
22	Effects of CaCl 2 on hydration and properties of lime(CaO)-activated slag/fly ash binder. Cement and Concrete Composites, 2017, 84, 111-123.	10.7	62
23	Utilization of precipitated CaCO3 from carbon sequestration of industrially emitted CO2 in cementless CaO-activated blast-furnace slag binder system. Journal of Cleaner Production, 2017, 166, 649-659.	9.3	30
24	Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement. Materials, 2017, 10, 900.	2.9	50
25	Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water. Materials, 2016, 9, 185.	2.9	26
26	Production of price-competitive bricks using a high volume of stone powder sludge waste and blast furnace slag through cementless CaO activation. Construction and Building Materials, 2016, 122, 343-353.	7.2	24
27	Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system. Cement and Concrete Composites, 2016, 72, 155-167.	10.7	92
28	Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum. Cement and Concrete Composites, 2016, 68, 57-65.	10.7	83
29	Influence of four additional activators on hydrated-lime [Ca(OH) 2] activated ground granulated blast-furnace slag. Cement and Concrete Composites, 2016, 65, 1-10.	10.7	82
30	The importance of the network-modifying element content in fly ash as a simple measure to predict its strength potential for alkali-activation. Cement and Concrete Composites, 2015, 57, 44-54.	10.7	19
31	Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Construction and Building Materials, 2015, 95, 96-107.	7.2	69
32	Influence of the structural modification of polycarboxylate copolymer with a low dispersing ability on the set-retarding of Portland cement. KSCE Journal of Civil Engineering, 2015, 19, 1787-1794.	1.9	8
33	Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cement and Concrete Research, 2015, 67, 215-225.	11.0	119
34	Characterization of geopolymers from compositionally and physically different Class F fly ashes. Cement and Concrete Composites, 2014, 50, 16-26.	10.7	70