Tsumoru Morimoto

List of Publications by Year

 in descending order
Source: https://exaly.com/author-pdf/3332645/publications.pdf

Version: 2024-02-01

Inter- and Intramolecular Cycloaddition Reactions of Ethenetricarboxylates with Styrenes and
Halostyrenes. Synthesis, 2021,53, 731-753.

Sulfonium ion-promoted traceless Schmidt reaction of alkyl azides. Chemical Communications, 2021, 57, 8738-8741.
$4.1 \quad 6$

Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Organic Chemistry Frontiers, 2021, 8, 5793-5803.

Rhodium(I)-Catalyzed CO-Gas-Free Arylative Dual-Carbonylation of Alkynes with Arylboronic Acids via the Formyl Câe"H Activation of Formaldehyde. Synthesis, 2021, 53, 3372-3382.

Photodissociation of the Product from a Transition-Metal Center Allows the Catalytic Cycle to
5 Proceed: The Rhodium(I)-Catalyzed [2+2+1] Carbonylative Cycloaddition of Diynes. Organic Letters, 2021, 23, 4893-4897.

6 Sequential Knoevenagel Condensation/Cyclization for the Synthesis of Indene and Benzofulvene
Derivatives. ACS Omega, 2021, 6, 28441-28454.

CO Gasâ€free Intramolecular Cyclocarbonylation Reactions of Haloarenes Having a Câ€Nucleophile
through COâ€Relay between Rhodium and Palladium. Chemistry - an Asian Journal, 2020, 15, 473-477.
3.3

Cationic Rhodium(I)â€€atalyzed Carbonylative [2+2+1] Cycloaddition of Diynes. Asian Journal of Organic
Chemistry, 2020, 9, 1778-1782.

Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by
$9 \begin{aligned} & \text { Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by } \\ & \text { inducing M phase (prometaphase) arrest and cell senescence. Scientific Reports, 2019, } 9,14867 .\end{aligned}$
3.3

20

Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions
Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.
3.2

10
$10 \quad$ Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.

Site-selective conversion of azido groups at carbonyl $\hat{\mathrm{I}} \pm$-positions into oxime groups leading triazide to
a triple click conjugation scaffold. Chemical Communications, 2019, 55, 1891-1894.
12 Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Molecules,
12 2019, 24, 4067.
3.8

29

The Use of Formaldehyde in the Rhodium-Catalyzed Linear-Selective Hydroformylation of Vinylheteroarenes. Heterocycles, 2019, 98, 519.

Synthesis, photophysical properties, and photodynamic activity of positional isomers of TFPP-glucose conjugates. Bioorganic and Medicinal Chemistry, 2018, 26, 1848-1858.
3.0

10

Nitrosoallene-Mediated <i>endo<|i>-Cyclizations for the Synthesis of (Hetero)cyclic $\hat{l} \pm$-Substituted
<i>exo<|i>-Unsaturated Oximes. Journal of Organic Chemistry, 2018, 83, 1614-1626.

Site-Selective Conversion of Azido Groups at Carbonyl $\hat{l} \pm$-Positions to Diazo Groups in Diazido and
Triazido Compounds. Journal of Organic Chemistry, 2018, 83, 12103-12121.
3.2

23

Acid Promoted Metal Free Synthesis of Triazole-Fused Heterocycles via Intramolecular [3+2]
Cycloaddition. Heterocycles, 2018, 96, 943.
$0.7 \quad 3$

Extended germa[N]pericyclynes: synthesis and characterization. Dalton Transactions, 2017, 46,
2281-2288.

21	Quantitative Photodeprotection Assessment of Caged Resveratrol by Fluorescence Measurement. ACS Omega, 2017, 2, 2300-2307.
22	Rhodium(I)â€€atalyzed Carbonylative Annulation of lodobenzenes with Strained Olefins and 4â€Octy the Presence of Furfural Involving <i>ortho</i>â€€â€"H Bond Cleavage. Advanced Synthesis and Cata 2017, 359, 240-245.

Rhodium(I)â€€atalyzed Carbonylative Annulation of lodobenzenes with Strained Olefins and 4â€Octyne in
the Presence of Furfural Involving <i>ortho<|i>â€€â€"H Bond Cleavage. Advanced Synthesis and Catalysis,

Synthesis and Photochemistry of a New Photolabile Protecting Group for Propargylic Alcohols.
27 Study of the Patern $\tilde{A} 2 \hat{a} €^{\text {" }} \mathrm{B} \tilde{A}^{1} / 4$ chi type photolabile protecting group and application to various acids.Tetrahedron Letters, 2016, 57, 5179-5184.

```
29 Pd(0)-catalyzed CO Gas-free Carbonylation of 2-Bromobiphenyls with Formaldehyde as a Carbonyl
Surrogate through the Cleavage of a Câ€"H Bond. Chemistry Letters, 2016, 45, 406-408.
```

Synthesis and Characterization of Ethynylated Germa[4]pericyclyne. Chemistry Letters, 2016, 45, 782-784.
1.3

11

$30 \quad$| Synthesis |
| :--- |
| $782-784$. |

Rh[|]â€Catalyzed Intramolecular Carbonylative Câ^H/Câ^I Coupling of 2â€łodobiphenyls Using
$31 \quad$ Furfural as a Carbonyl Source. Chemistry - an Asian Journal, 2016, 11, 2312-2315.
3.3

20

Synthesis of novel caged antisense oligonucleotides with fluorescence property. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 175-183.
3.9

6

Synthesis of $\hat{I} \pm$-Substituted Enoximes with Nucleophiles via Nitrosoallenes. Journal of Organic
3.2

19
33 Chemistry, 2016, 81, 559-574.

Stepwise synthesis and characterization of germa[4], [5], [8], and [10]pericyclynes. Dalton

Enantiodifferentiating [2+2] photocycloaddition of cyclohexenone carboxylic acid with ethylene using 8-phenylmenthyl amine as a chiral template. Tetrahedron Letters, 2014, 55, 2123-2126.
$1.4 \quad 7$

Acid-mediated synthesis of fully substituted 1,2,3-triazoles: multicomponent coupling reactions,
39 mechanistic study, synthesis of serine hydrolase inhibitor and its derivatives. Tetrahedron, 2014, 70,
1.9

9828-9835.

40 Synthesis and characterization of germa[n]pericyclynes. Dalton Transactions, 2014, 43, 8338-8343.
3.3

45	Novel Methods for the Synthesis of Carbonyl Compounds Based on Decarbonylation of Aldehy Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 983-991.
46	Diastereoselective [2 + 2] Photocycloaddition of Cyclohexenone Derivative with Olefins in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2013, 78, 7186-7193.
47	Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography. Journal of Molecular Structure, 2013, 1036, 133-143.

Diastereodifferentiating [2+2] photocycloaddition of chiral cyclohexenone carboxylates with
56 cyclopentene by a microreactor. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242,

61 | Mono- or Diplatinum Complexes Containing a Ï€-Conjugated Pentadiynyl Ligand. European Journal of |
| :--- |
| Inorganic Chemistry, 2010, 2010, 2361-2368. |

63 Cyclohexenonecarboxylates: Stackingâ€Driven Enhancement of the Product Diastereoselectivity | Correlated with the Reactant Ellipticity. Chemistry - A European Journal, 2010, 16, 7448-7455. |
| :--- |
| 64 Synthesis and biological activity of 2-hydroxynicotinoyl-serine-butyl esters related to antibiotic |
| UK-3A. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4018-4020. |
| 65 Diastereoselective [2 + 2] Photocycloaddition of Chiral Cyclic Enone and Cyclopentene Using a |
| Microflow Reactor System. Chemistry Letters, 2010, 39, 828-829. |

65 Microflow Reactor System. Chemistry Letters, 2010, 39, 828-829.66 Utilization of Aldoses as a Carbonyl Source in Cyclocarbonylation of Enynes. Journal of OrganicChemistry, 2010, 75, 6279-6282.
3.2

28
Enantioselective Friedelâ€"Crafts reactions of ethenetricarboxylates and substituted pyrroles and
67 furans and intramolecular reaction of benzene derivatives. Tetrahedron: Asymmetry, 2009, 20,
furans and in
1224-1234.
1.8

30 1224-1234.

Rh(I)-Catalyzed CO Gas-Free Carbonylative Cyclization Reactions of Alkynes with
$68 \quad$ 2-Bromophenylboronic Acids Using Formaldehyde. Organic Letters, 2009, 11, 177 2-Bromophenylboronic Acids Using Formaldehyde. Organic Letters, 2009, 11, 1777-1780.
73 A novel route for the construction of Taxol ABC-ring framework: skeletal rearrangement approach
to AB-ring and intramolecular aldol approach to C-ring. Tetrahedron, 2008, 64, 4051-4059.
74 Direct asymmetric aldol reactions catalyzed by I-proline-2,4,6-trinitroanilide. Tetrahedron Letters, 2008, 49, 2402-2406.
1.4
26
$75 \quad$ Synthesis and characterization of thiochromone S,S-dioxides as new photolabile protecting groups.
$4.1 \quad 42$
Chemical Communications, 2008, , 2103.
76 Mono- and Dipalladium Movement on the Ï€-Conjugated Five-Carbon Chain. Organometallics, 2008, 27,
2.3
276-280.
13
$77 \quad$ Rhodium-catalyzed CO gas-free carbonylative cyclization using aldehydes. Pure and Applied Chemistry, 1.9 2008, 80, 1079-1087.

1.9
Lewis Acid-Catalyzed Conjugate Additionâ^’Cyclization Reactions of Ethenetricarboxylates with
78 Substituted Propargyl Alcohols:Â Stereoselectivity in the Efficient One-Pot Synthesis of
3.248 Methylenetetrahydrofurans. Journal of Organic Chemistry, 2007, 72, 6459-6463.
79 Rh(I)-catalyzed CO gas-free carbonylative cyclization of organic halides with tethered nucleophiles
79 using aldehydes as a substitute for carbon monoxide. Journal of Organometallic Chemistry, 2007, 692 1.8
625-634.
80 Synthesis and Characterization of Cyclopentadienone-annelated Hexadehydrodibenzo[12]annulene.
Chemistry Letters, 2006, 35, 168-169.1.36
81 Asymmetric [2+2] photocycloaddition of cycloalkenoneâ€"cyclodextrin complexes to ethylene. Chirality, 2006, 18, 217-221. 2.6 13
82 Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. Chemlnform, 2005, 36, no. 0.0 0
83 Catalytic Carbonylation Methods Without the Direct Use of Carbon Monoxide. Chemlnform, 2005, 36,
no. 0
84 Catalytic Asymmetric Pauson?Khand-Type Reactions of Enynes with Formaldehyde in Aqueous Media..ChemInform, 2005, 36, no.$0.0 \quad 0$
85 Rh(I)-Catalyzed CO Gas-Free Cyclohydrocarbonylation of Alkynes with Formaldehyde to $\hat{I} \pm, \hat{\imath} 2$-Butenolides..
ChemInform, 2005, 36, no.Trimethylbenzenes. Journal of Occupational Health, 2005, 47, 337-339.$2.1 \quad 2$
91

92

> Palladium-Catalyzed Preparation of Propargylic or Allenylic Sulfides from Propargyl Halides or
> Mesylate and Thiols. European Journal of Organic Chemistry, 2004, 2004, 504-510.
2.4

14

Palladium-Catalyzed Preparation of Propargylic or Allenylic Sulfides from Propargyl Halides or
0.0 Mesylate and Thiols.. ChemInform, 2004, 35, no.
$0.0 \quad 0$

93	Diastereoselective [2+2] photocycloaddition of polymer-supported cyclic chiral enone with ethylene. Tetrahedron Letters, 2004, 45, 1849-1851.	1.4	15
94	Highly diastereoselective synthesis of bicyclo[4.2.0]octanone derivatives by the [2+2] photocycloaddition of chiral cyclohexenonecarboxylates to ethylene. Tetrahedron Letters, 2004, 45, 7621-7624.	1.4	20
95	Catalytic asymmetric Pausonâ $€^{\prime \prime K}$ Khand-type reactions of enynes with formaldehyde in aqueous media. Tetrahedron Letters, 2004, 45, 9163-9166.	1.4	56
96	Novel Enhancement of Diastereoselectivity of [2+2] Photocycloaddition of Chiral Cyclohexenones to Ethylene by Adding Naphthalenes. Journal of Organic Chemistry, 2004, 69, 785-789.	3.2	31
97	Title is missing!. Angewandte Chemie, 2003, 115, 2511-2513.	2.0	39
98	Regioselective Radical Ring-Opening Reaction of Bicyclo[4.2.0]octan-2-ones Promoted by Samarium(II) lodide.. ChemInform, 2003, 34, no.	0.0	0
99	Rhodium-Catalyzed Intramolecular Aminocarbonylation of Aryl Halides Using Aldehydes as a Source of Carbon Monoxide.. ChemInform, 2003, 34, no.	0.0	0

Aqueous Catalytic Pausonâ€"Khand-Type Reactions of Enynes with Formaldehyde: Transfer
100 Carbonylation Involving an Aqueous Decarbonylation and a Micellar Carbonylation.. ChemInfo Candan and Micellar Carbonylation.. Cheminform,
0.0
o 2003, 34, no.

101	Diastereoselective $[2+2]$ photocycloaddition of chiral cyclohexenonecarboxylates to ethylene. Chirality, 2003, 15, 504-509.	2.6	16
102	Aqueous Catalytic Pausonấ"Khand-Type Reactions of Enynes with Formaldehyde: Transfer Carbonylation Involving an Aqueous Decarbonylation and a Micellar Carbonylation. Angewandte Chemie - International Edition, 2003, 42, 2409-2411.	13.8	134
103	A new route for the construction of the AB-ring core of Taxol. Tetrahedron Letters, 2003, 44, 1401-1403.	1.4	25

104 Regioselective radical ring-opening reaction of bicyclo[4.2.0] octan-2-ones promoted by samarium(II) iodide. Tetrahedron Letters, 2003, 44, 1963-1966.
1.4

11

> 105 Effects of a Bidentate Phosphine Ligand on Palladium-Catalyzed Nucleophilic Substitution Reactions of Propargyl and Allyl Halides with Thiol. Organometallics, 2003, 22, 2996-2999.
2.3

34

106 Rhodium-Catalyzed Intramolecular Aminocarbonylation of Aryl Halides Using Aldehydes as a Source
1.3

51

$$
\begin{aligned}
& \text { CO-Transfer Carbonylation Reactions. A Catalytic Pausonâ^Khand-Type Reaction of Enynes with } \\
& 107 \text { Aldehydes as a Source of Carbon Monoxide. Journal of the American Chemical Society, 2002, 124, } \\
& 3806-3807 \text {. }
\end{aligned}
$$

109

$$
\begin{aligned}
& \text { Reductive radical cyclization of cyclic ̂̂3-cyanoketones promoted by samarium(II) iodide without } \\
& \text { photoirradiation. Tetrahedron Letters, 2001, 42, } 7595-7598 \text {. }
\end{aligned}
$$

110 Carbonylative [5 + 1] Cycloaddition of Cyclopropyl Imines Catalyzed by Ruthenium Carbonyl Complex. Journal of Organic Chemistry, 2000, 65, 9230-9233.
1.4

The First Catalytic Carbonylative [4 + 1] Cycloaddition Using a 1,3-Conjugated System. A New
112 Transformation of $\hat{I} \pm, \hat{\imath}^{2}$-Unsaturated Imines to Unsaturated ${ }^{3}$-Lactams Catalyzed by Ru3(CO) 12. Journal of
 the American Chemical Society, 1999, 121, 1758-1759.

Ru3(CO)12-Catalyzed Cyclocarbonylation of Yne-Aldehydes to Bicyclic $\hat{I} \pm, \hat{\imath} 2$-Unsaturated $\hat{\imath ̂} 3$-Butyrolactones.	
Journal of the American Chemical Society, 1998, 120, 5335-5336.	13.7

114 Ru3(CO)12-Catalyzed Cyclocarbonylation of 1,6-Enynes to Bicyclo[3.3.0]octenones. Journal of Organic Chemistry, 1997, 62, 3762-3765.
Preparation of vinylgermanes and a germole by the Pd-catalyzed reactions of Me(in3)GeCn with
acetylenes. Journal of Organometallic Chemistry, 1994, 473, 335-342.
116

Highly Selective Skeletal Reorganization of 1,6- and 1,7-Enynes to 1-Vinylcycloalkenes Catalyzed by [RuCl2(CO)3]2. Journal of the American Chemical Society, 1994, 116, 6049-6050.
Nucleophilic substitution at the central allyl carbon atom of a (.pi.-allyl)platinum complex. Journal of
the American Chemical Society, 1994, 116, 4125-4126.

