
Tsumoru Morimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. Angewandte Chemie - International Edition, 2004, 43, 5580-5588.	13.8	513
2	Highly Selective Skeletal Reorganization of 1,6- and 1,7-Enynes to 1-Vinylcycloalkenes Catalyzed by [RuCl2(CO)3]2. Journal of the American Chemical Society, 1994, 116, 6049-6050.	13.7	245
3	CO-Transfer Carbonylation Reactions. A Catalytic Pausonâ ''Khand-Type Reaction of Enynes with Aldehydes as a Source of Carbon Monoxide. Journal of the American Chemical Society, 2002, 124, 3806-3807.	13.7	239
4	Ru3(CO)12-Catalyzed Cyclocarbonylation of 1,6-Enynes to Bicyclo[3.3.0]octenones. Journal of Organic Chemistry, 1997, 62, 3762-3765.	3.2	148
5	Aqueous Catalytic Pauson–Khand-Type Reactions of Enynes with Formaldehyde: Transfer Carbonylation Involving an Aqueous Decarbonylation and a Micellar Carbonylation. Angewandte Chemie - International Edition, 2003, 42, 2409-2411.	13.8	134
6	Rh(I)-Catalyzed CO Gas-Free Carbonylative Cyclization Reactions of Alkynes with 2-Bromophenylboronic Acids Using Formaldehyde. Organic Letters, 2009, 11, 1777-1780.	4.6	134
7	Iridium(I)-Catalyzed Cycloisomerization of Enynes. Journal of Organic Chemistry, 2001, 66, 4433-4436.	3.2	130
8	Ru3(CO)12-Catalyzed Cyclocarbonylation of Yne-Aldehydes to Bicyclic α,β-Unsaturated γ-Butyrolactones. Journal of the American Chemical Society, 1998, 120, 5335-5336.	13.7	109
9	Rh(II)-Catalyzed Skeletal Reorganization of 1,6- and 1,7-Enynes through Electrophilic Activation of Alkynes. Journal of the American Chemical Society, 2009, 131, 15203-15211.	13.7	95
10	Rh(i)-catalyzed CO gas-free cyclohydrocarbonylation of alkynes with formaldehyde to α,β-butenolides. Chemical Communications, 2005, , 3295.	4.1	79
11	The First Catalytic Carbonylative [4 + 1] Cycloaddition Using a 1,3-Conjugated System. A New Transformation of α,β-Unsaturated Imines to Unsaturated γ-Lactams Catalyzed by Ru3(CO)12. Journal of the American Chemical Society, 1999, 121, 1758-1759.	13.7	78
12	Nucleophilic substitution at the central allyl carbon atom of a (.piallyl)platinum complex. Journal of the American Chemical Society, 1994, 116, 4125-4126.	13.7	75
13	Regioselective Rapid Synthesis of Fully Substituted 1,2,3-Triazoles Mediated by Propargyl Cations. Organic Letters, 2013, 15, 5222-5225.	4.6	75
14	Highly Linearâ€Selective Hydroformylation of 1â€Alkenes using Formaldehyde as a Syngas Substitute. Advanced Synthesis and Catalysis, 2010, 352, 299-304.	4.3	70
15	Carbonylative [5 + 1] Cycloaddition of Cyclopropyl Imines Catalyzed by Ruthenium Carbonyl Complex. Journal of Organic Chemistry, 2000, 65, 9230-9233.	3.2	63
16	Catalytic asymmetric Pauson–Khand-type reactions of enynes with formaldehyde in aqueous media. Tetrahedron Letters, 2004, 45, 9163-9166.	1.4	56
17	Diastereoselective [2 + 2] Photocycloaddition of Chiral Cyclic Enone and Cyclopentene Using a Microflow Reactor System. Chemistry Letters, 2010, 39, 828-829.	1.3	53
18	Rh(I)-Catalyzed Asymmetric Synthesis of 3-Substituted Isoindolinones through CO Gas-Free Aminocarbonylation. Journal of Organic Chemistry, 2012, 77, 2911-2923.	3.2	53

#	Article	IF	CITATIONS
19	Rh(I)-catalyzed CO gas-free carbonylative cyclization of organic halides with tethered nucleophiles using aldehydes as a substitute for carbon monoxide. Journal of Organometallic Chemistry, 2007, 692, 625-634.	1.8	52
20	Ru3(CO)12-catalyzed reaction of yne–imines with carbon monoxide leading to bicyclic α,β-unsaturated lactams. Journal of Organometallic Chemistry, 1999, 579, 177-181.	1.8	51
21	Rhodium-Catalyzed Intramolecular Aminocarbonylation of Aryl Halides Using Aldehydes as a Source of Carbon Monoxide. Chemistry Letters, 2003, 32, 154-155.	1.3	51
22	Lewis Acid-Catalyzed Conjugate Additionâ^'Cyclization Reactions of Ethenetricarboxylates with Substituted Propargyl Alcohols:Â Stereoselectivity in the Efficient One-Pot Synthesis of Methylenetetrahydrofurans. Journal of Organic Chemistry, 2007, 72, 6459-6463.	3.2	48
23	Palladium-catalyzed reactions of ketone .alphacarbonates with norbornenes. An unusual cyclopropanation. Journal of Organic Chemistry, 1993, 58, 9-10.	3.2	47
24	Oneâ€Pot/Fourâ€Step/Palladiumâ€Catalyzed Synthesis of Indole Derivatives: The Combination of Heterogeneous and Homogeneous Systems. Advanced Synthesis and Catalysis, 2008, 350, 2498-2502.	4.3	46
25	Synthesis and characterization of thiochromone S,S-dioxides as new photolabile protecting groups. Chemical Communications, 2008, , 2103.	4.1	42
26	Title is missing!. Angewandte Chemie, 2003, 115, 2511-2513.	2.0	39
27	Diastereoselective [2+2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor. Journal of Flow Chemistry, 2012, 2, 73-76.	1.9	38
28	Accessible protocol for asymmetric hydroformylation of vinylarenes using formaldehyde. Organic and Biomolecular Chemistry, 2015, 13, 4632-4636.	2.8	37
29	Effects of a Bidentate Phosphine Ligand on Palladium-Catalyzed Nucleophilic Substitution Reactions of Propargyl and Allyl Halides with Thiol. Organometallics, 2003, 22, 2996-2999.	2.3	34
30	Efficient Synthesis of α,β-Unsaturated Alkylimines Performed with Allyl Cations and Azides: Application to the Synthesis of an Ant Venom Alkaloid. Organic Letters, 2012, 14, 5728-5731.	4.6	34
31	Novel Enhancement of Diastereoselectivity of [2 + 2] Photocycloaddition of Chiral Cyclohexenones to Ethylene by Adding Naphthalenes. Journal of Organic Chemistry, 2004, 69, 785-789.	3.2	31
32	Enantioselective Friedel–Crafts reactions of ethenetricarboxylates and substituted pyrroles and furans and intramolecular reaction of benzene derivatives. Tetrahedron: Asymmetry, 2009, 20, 1224-1234.	1.8	30
33	Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Organic Process Research and Development, 2016, 20, 1626-1632.	2.7	30
34	Diastereodifferentiating [2+2] photocycloaddition of chiral cyclohexenone carboxylates with cyclopentene by a microreactor. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 13-19.	3.9	29
35	Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Molecules, 2019, 24, 4067.	3.8	29
36	Zinc-Catalyzed Reactions of Ethenetricarboxylates with 2-(Trimethylsilylethynyl)anilines Leading to Bridged Quinoline Derivatives. Organic Letters, 2009, 11, 2796-2799.	4.6	28

Тѕимоги Могімото

#	Article	IF	CITATIONS
37	Utilization of Aldoses as a Carbonyl Source in Cyclocarbonylation of Enynes. Journal of Organic Chemistry, 2010, 75, 6279-6282.	3.2	28
38	Asymmetric Pauson–Khand-type reactions of 1,6-enynes usingÂformaldehyde as a carbonyl source by cooperative dualÂrhodium catalysis. Tetrahedron, 2015, 71, 875-881.	1.9	28
39	Preparation of vinylgermanes and a germole by the Pd-catalyzed reactions of Me(in3)GeCn with acetylenes. Journal of Organometallic Chemistry, 1994, 473, 335-342.	1.8	26
40	Direct asymmetric aldol reactions catalyzed by l-proline-2,4,6-trinitroanilide. Tetrahedron Letters, 2008, 49, 2402-2406.	1.4	26
41	Reductive radical cyclization of cyclic γ-cyanoketones promoted by samarium(II) iodide without photoirradiation. Tetrahedron Letters, 2001, 42, 7595-7598.	1.4	25
42	A new route for the construction of the AB-ring core of Taxol. Tetrahedron Letters, 2003, 44, 1401-1403.	1.4	25
43	Site-selective conversion of azido groups at carbonyl α-positions into oxime groups leading triazide to a triple click conjugation scaffold. Chemical Communications, 2019, 55, 1891-1894.	4.1	25
44	Rhodium-catalyzed CO gas-free carbonylative cyclization using aldehydes. Pure and Applied Chemistry, 2008, 80, 1079-1087.	1.9	24
45	Pd(0)-catalyzed CO Gas-free Carbonylation of 2-Bromobiphenyls with Formaldehyde as a Carbonyl Surrogate through the Cleavage of a C–H Bond. Chemistry Letters, 2016, 45, 406-408.	1.3	23
46	Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. Journal of Organic Chemistry, 2018, 83, 12103-12121.	3.2	23
47	Diastereodifferentiating the [2+2] Photocycloaddition of Ethylene to Arylmenthyl Cyclohexenonecarboxylates: Stackingâ€Đriven Enhancement of the Product Diastereoselectivity That Is Correlated with the Reactant Ellipticity. Chemistry - A European Journal, 2010, 16, 7448-7455.	3.3	21
48	Acid-mediated synthesis of fully substituted 1,2,3-triazoles: multicomponent coupling reactions, mechanistic study, synthesis of serine hydrolase inhibitor and its derivatives. Tetrahedron, 2014, 70, 9828-9835.	1.9	21
49	Highly diastereoselective synthesis of bicyclo[4.2.0]octanone derivatives by the [2+2] photocycloaddition of chiral cyclohexenonecarboxylates to ethylene. Tetrahedron Letters, 2004, 45, 7621-7624.	1.4	20
50	A novel thiochromone-type photolabile protecting group for carbonyl compounds. Tetrahedron, 2013, 69, 3984-3990.	1.9	20
51	Rh ^I â€Catalyzed Intramolecular Carbonylative Câ^'H/Câ^'I Coupling of 2″odobiphenyls Using Furfural as a Carbonyl Source. Chemistry - an Asian Journal, 2016, 11, 2312-2315.	3.3	20
52	Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Scientific Reports, 2019, 9, 14867.	3.3	20
53	Synthesis of α-Substituted Enoximes with Nucleophiles via Nitrosoallenes. Journal of Organic Chemistry, 2016, 81, 559-574.	3.2	19
54	Rhodium(I)â€Catalyzed Carbonylative Annulation of Iodobenzenes with Strained Olefins and 4â€Octyne in the Presence of Furfural Involving <i>ortho</i> â€C–H Bond Cleavage. Advanced Synthesis and Catalysis, 2017, 359, 240-245.	4.3	19

Тѕимоги Могімото

#	Article	IF	CITATIONS
55	Double nucleophilic N-alkylation of α-oxime-esters with Grignard reagents. Tetrahedron Letters, 2012, 53, 5903-5906.	1.4	18
56	Synthesis and characterization of germa[n]pericyclynes. Dalton Transactions, 2014, 43, 8338-8343.	3.3	17
57	Diastereoselective [2+2] photocycloaddition of chiral cyclohexenonecarboxylates to ethylene. Chirality, 2003, 15, 504-509.	2.6	16
58	Diastereoselective [2+2] photocycloaddition of polymer-supported cyclic chiral enone with ethylene. Tetrahedron Letters, 2004, 45, 1849-1851.	1.4	15
59	Palladium-Catalyzed Preparation of Propargylic or Allenylic Sulfides from Propargyl Halides or Mesylate and Thiols. European Journal of Organic Chemistry, 2004, 2004, 504-510.	2.4	14
60	Asymmetric [2+2] photocycloaddition of cycloalkenone–cyclodextrin complexes to ethylene. Chirality, 2006, 18, 217-221.	2.6	13
61	Mono- and Dipalladium Movement on the π-Conjugated Five-Carbon Chain. Organometallics, 2008, 27, 276-280.	2.3	13
62	Stepwise synthesis and characterization of germa[4], [5], [8], and [10]pericyclynes. Dalton Transactions, 2015, 44, 11811-11818.	3.3	13
63	Regioselective radical ring-opening reaction of bicyclo[4.2.0]octan-2-ones promoted by samarium(II) iodide. Tetrahedron Letters, 2003, 44, 1963-1966.	1.4	11
64	Synthesis and anticancer activity of polyhydroxylated 18-membered analogue of antimycin A3. Tetrahedron, 2012, 68, 2884-2891.	1.9	11
65	Rhodium(I)-Catalyzed Carbonylative Arylation of Alkynes with Arylboronic Acids Using Formaldehyde as a Carbonyl Source. Synlett, 2014, 25, 1155-1159.	1.8	11
66	Synthesis and Characterization of Ethynylated Germa[4]pericyclyne. Chemistry Letters, 2016, 45, 782-784.	1.3	11
67	Novel Photolabile Protecting Group for Phosphate Compounds. Synlett, 2012, 23, 367-370.	1.8	10
68	Rh(I)-Catalyzed Cyclocarbonylation of Enynes with Glyceraldehyde: An Available Carbonyl Source Derived from Sugar Alcohols. Synlett, 2012, 23, 393-396.	1.8	10
69	Formal [3+2] Cycloaddition of Nitrosoallenes with Carbonyl and Nitrile Compounds to Form Functional Cyclic Nitrones. Journal of Organic Chemistry, 2016, 81, 8722-8735.	3.2	10
70	Study of the Paternò–Büchi type photolabile protecting group and application to various acids. Tetrahedron Letters, 2016, 57, 5179-5184.	1.4	10
71	Extended germa[N]pericyclynes: synthesis and characterization. Dalton Transactions, 2017, 46, 2281-2288.	3.3	10
72	Synthesis, photophysical properties, and photodynamic activity of positional isomers of TFPP-glucose conjugates. Bioorganic and Medicinal Chemistry, 2018, 26, 1848-1858.	3.0	10

#	Article	IF	CITATIONS
73	Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.	3.2	10
74	Diastereodifferentiating [2+2] Photocycloaddition of a Chiral Cyclohexenone with Cyclopentene in Supercritical Carbon Dioxide Using a Flow Microreactor. Journal of Flow Chemistry, 2014, 4, 185-189.	1.9	9
75	Rhodium-catalyzed Carbonylative Annulation of 2-Bromobenzylic Alcohols with Internal Alkynes Using Furfural via β-Aryl Elimination. Chemistry Letters, 2017, 46, 926-929.	1.3	9
76	An acid-catalyzed ring-switch reaction of lactams to lactones: concise synthesis of 2,4-dialkyl-3-hydroxybutanolides. Tetrahedron, 2008, 64, 3133-3140.	1.9	8
77	Diastereoselective [2 + 2] Photocycloaddition of Cyclohexenone Derivative with Olefins in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2013, 78, 7186-7193.	3.2	8
78	Synthesis and evaluation of new caged compound with thiochromone derivative. Tetrahedron, 2014, 70, 7973-7976.	1.9	8
79	Areneâ€Inserted Extended Germa[<i>n</i>]pericyclynes: Synthesis, Structure, and Phosphorescence Properties. Chemistry - A European Journal, 2017, 23, 10080-10086.	3.3	8
80	Acid-Catalyzed Rearrangement of an Allene-Cyclohexenone Photoadduct and its Application in the Synthesis of (±)-Pentalenene. Synthesis, 2004, 2004, 753-756.	2.3	7
81	Synthesis of Hetarenoindanone Based on Selenium Dioxide-Promoted Direct Intramolecular Cyclization. Heterocycles, 2011, 83, 2337.	0.7	7
82	Enantiodifferentiating [2+2] photocycloaddition of cyclohexenone carboxylic acid with ethylene using 8-phenylmenthyl amine as a chiral template. Tetrahedron Letters, 2014, 55, 2123-2126.	1.4	7
83	Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Organic Chemistry Frontiers, 2021, 8, 5793-5803.	4.5	7
84	Synthesis and Characterization of Cyclopentadienone-annelated Hexadehydrodibenzo[12]annulene. Chemistry Letters, 2006, 35, 168-169.	1.3	6
85	A novel route for the construction of Taxol ABC-ring framework: skeletal rearrangement approach to AB-ring and intramolecular aldol approach to C-ring. Tetrahedron, 2008, 64, 4051-4059.	1.9	6
86	Total synthesis of unsaturated imine venom alkaloids of Costa Rican ant by way of Schmidt reaction via allyl/pentadienyl cations. Tetrahedron, 2014, 70, 8600-8605.	1.9	6
87	Synthesis of novel caged antisense oligonucleotides with fluorescence property. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 175-183.	3.9	6
88	Quantitative Photodeprotection Assessment of Caged Resveratrol by Fluorescence Measurement. ACS Omega, 2017, 2, 2300-2307.	3.5	6
89	Nitrosoallene-Mediated <i>endo</i> -Cyclizations for the Synthesis of (Hetero)cyclic α-Substituted <i>exo</i> -Unsaturated Oximes. Journal of Organic Chemistry, 2018, 83, 1614-1626.	3.2	6
90	Inter- and Intramolecular Cycloaddition Reactions of Ethenetricarboxylates with Styrenes and Halostyrenes. Synthesis, 2021, 53, 731-753.	2.3	6

#	Article	IF	CITATIONS
91	Sulfonium ion-promoted traceless Schmidt reaction of alkyl azides. Chemical Communications, 2021, 57, 8738-8741.	4.1	6
92	Design and Molecular Docking Study of Antimycin A ₃ Analogues as Inhibitors of Anti-Apoptotic Bcl-2 of Breast Cancer. Open Journal of Medicinal Chemistry, 2014, 04, 79-86.	0.7	6
93	Catalytic Carbonylation Methods without the Direct Use of Carbon Monoxide. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 861-871.	0.1	5
94	Diastereoselective [2+2] Photocycloaddition of Chiral Cyclic Enones with Olefins in Aqueous Media Using Surfactants. Molecules, 2013, 18, 1626-1637.	3.8	5
95	Synthesis and evaluation of a chiral menthol functionalized silsesquioxane: application to diastereoselective [2+2] photocycloaddition. Research on Chemical Intermediates, 2013, 39, 101-110.	2.7	5
96	Synthesis of Fused 1,2,3-Triazoles through Carbocation-Mediated Intramolecular [3+2] Cycloaddition of Azido-propargyl Alcohols. Heterocycles, 2017, 94, 1775.	0.7	5
97	Synthesis and Photochemistry of a New Photolabile Protecting Group for Propargylic Alcohols. Synlett, 2017, 28, 560-564.	1.8	5
98	Synthesis and biological activity of 2-hydroxynicotinoyl-serine-butyl esters related to antibiotic UK-3A. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4018-4020.	2.2	4
99	Approach to Phenanthroindolizidine Alkaloids Using Organic Azides with 1-Aryl Allylic Alcohols: Unexpected Tandem Reactions to Indenyl Aziridines via Nazarov Cyclization. Heterocycles, 2016, 92, 1313.	0.7	4
100	Cationic Rhodium(I) atalyzed Carbonylative [2+2+1] Cycloaddition of Diynes. Asian Journal of Organic Chemistry, 2020, 9, 1778-1782.	2.7	4
101	Acid Promoted Metal Free Synthesis of Triazole-Fused Heterocycles via Intramolecular [3+2] Cycloaddition. Heterocycles, 2018, 96, 943.	0.7	3
102	The Use of Formaldehyde in the Rhodium-Catalyzed Linear-Selective Hydroformylation of Vinylheteroarenes. Heterocycles, 2019, 98, 519.	0.7	3
103	Determination of Urinary Phenolic Metabolites from Rats Treated with 1,2,3―and 1,3,5― Trimethylbenzenes. Journal of Occupational Health, 2005, 47, 337-339.	2.1	2
104	CO Gasâ€free Intramolecular Cyclocarbonylation Reactions of Haloarenes Having a Câ€Nucleophile through COâ€Relay between Rhodium and Palladium. Chemistry - an Asian Journal, 2020, 15, 473-477.	3.3	2
105	Mono- or Diplatinum Complexes Containing a π-Conjugated Pentadiynyl Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 2361-2368.	2.0	1
106	Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography. Journal of Molecular Structure, 2013, 1036, 133-143.	3.6	1
107	Rhodium(I)-Catalyzed CO-Gas-Free Arylative Dual-Carbonylation of Alkynes with Arylboronic Acids via the Formyl C–H Activation of Formaldehyde. Synthesis, 2021, 53, 3372-3382.	2.3	1
108	Photodissociation of the Product from a Transition-Metal Center Allows the Catalytic Cycle to Proceed: The Rhodium(I)-Catalyzed [2+2+1] Carbonylative Cycloaddition of Diynes. Organic Letters, 2021, 23, 4893-4897.	4.6	1

Тѕимоги Могімото

#	Article	IF	CITATIONS
109	Sequential Knoevenagel Condensation/Cyclization for the Synthesis of Indene and Benzofulvene Derivatives. ACS Omega, 2021, 6, 28441-28454.	3.5	1
110	Regioselective Radical Ring-Opening Reaction of Bicyclo[4.2.0]octan-2-ones Promoted by Samarium(II) Iodide ChemInform, 2003, 34, no.	0.0	0
111	Rhodium-Catalyzed Intramolecular Aminocarbonylation of Aryl Halides Using Aldehydes as a Source of Carbon Monoxide ChemInform, 2003, 34, no.	0.0	0
112	Aqueous Catalytic Pauson—Khand-Type Reactions of Enynes with Formaldehyde: Transfer Carbonylation Involving an Aqueous Decarbonylation and a Micellar Carbonylation ChemInform, 2003, 34, no.	0.0	0
113	Palladium-Catalyzed Preparation of Propargylic or Allenylic Sulfides from Propargyl Halides or Mesylate and Thiols ChemInform, 2004, 35, no.	0.0	0
114	Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. ChemInform, 2005, 36, no.	0.0	0
115	Catalytic Carbonylation Methods Without the Direct Use of Carbon Monoxide. ChemInform, 2005, 36, no.	0.0	0
116	Catalytic Asymmetric Pauson?Khand-Type Reactions of Enynes with Formaldehyde in Aqueous Media ChemInform, 2005, 36, no.	0.0	0
117	Rh(I)-Catalyzed CO Gas-Free Cyclohydrocarbonylation of Alkynes with Formaldehyde to α,β-Butenolides ChemInform, 2005, 36, no.	0.0	0
118	Novel Methods for the Synthesis of Carbonyl Compounds Based on Decarbonylation of Aldehydes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 983-991.	0.1	0
119	Concise Synthesis of the Terpene Core Structure of Suaveolindole Through a Time-Economic Route. Synlett, 0, , .	1.8	0