List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporating Nb into MoSe ₂ Nanoflowers for Overall Electrocatalytic Water Splitting. Israel Journal of Chemistry, 2022, 62, .	1.0	4
2	Alcohol oxidation with high efficiency and selectivity by nickel phosphide phases. Journal of Materials Chemistry A, 2022, 10, 8238-8244.	5.2	20
3	W Doping in Ni ₁₂ P ₅ as a Platform to Enhance Overall Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 581-589.	4.0	29
4	NiSe and CoSe Topological Nodalâ€Line Semimetals: A Sustainable Platform for Efficient Thermoplasmonics and Solarâ€Driven Photothermal Membrane Distillation. Small, 2022, 18, .	5.2	21
5	Facile synthetic approach to produce optimized molybdenum carbide catalyst for alkaline HER. Applied Surface Science, 2021, 559, 149932.	3.1	7
6	Oriented Attachment of 2D Nanosheets: The Case of Few-Layer Bi ₂ Se ₃ . Chemistry of Materials, 2021, 33, 7558-7565.	3.2	9
7	Shelling with MoS2: Functional CuS@MoS2 hybrids as electrocatalysts for the oxygen reduction and hydrogen evolution reactions. Chemical Engineering Journal, 2021, 420, 129771.	6.6	35
8	Identifying a New Pathway for Nitrogen Reduction Reaction on Fe-Doped MoS ₂ by the Coadsorption of Hydrogen and N ₂ . Journal of Physical Chemistry C, 2021, 125, 19980-19990.	1.5	14
9	Ni–WSe ₂ nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. Journal of Materials Chemistry A, 2020, 8, 1403-1416.	5.2	102
10	Catalytic Hydrogen Evolution Reaction Enhancement on Vertically Aligned MoS ₂ by Synergistic Addition of Silver and Palladium. ChemElectroChem, 2020, 7, 4224-4232.	1.7	1
11	Interactions between Transition-Metal Surfaces and MoS ₂ Monolayers: Implications for Hydrogen Evolution and CO ₂ Reduction Reactions. Journal of Physical Chemistry C, 2020, 124, 20116-20124.	1.5	12
12	One-pot synthesis of MoS2(1â^'x)Se2x on N-doped reduced graphene oxide: tailoring chemical and structural properties for photoenhanced hydrogen evolution reaction. Nanoscale Advances, 2020, 2, 4830-4840.	2.2	3
13	Promoting Active Sites for Hydrogen Evolution in MoSe ₂ via Transition-Metal Doping. Journal of Physical Chemistry C, 2020, 124, 12324-12336.	1.5	38
14	Nickel phosphide catalysts for hydrogen generation through water reduction, ammonia-borane and borohydride hydrolysis. Applied Materials Today, 2020, 20, 100693.	2.3	19
15	Coâ€Doped MoSe ₂ Nanoflowers as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction (HER) in Acidic and Alkaline Media. Israel Journal of Chemistry, 2020, 60, 624-629.	1.0	32
16	Structural Transformation of SnS ₂ to SnS by Mo Doping Produces Electro/Photocatalyst for Hydrogen Production. Chemistry - A European Journal, 2020, 26, 6679-6685.	1.7	23
17	Seeded Rods with Ag and Pd Bimetallic Tips—Spontaneous Rearrangements of the Nanoalloys on the Atomic Scale. Chemistry of Materials, 2019, 31, 7231-7237.	3.2	6
18	Au-MoS ₂ Hybrids as Hydrogen Evolution Electrocatalysts. ACS Applied Energy Materials, 2019, 2, 6043-6050.	2.5	43

#	Article	IF	CITATIONS
19	Porous MoS ₂ Framework and Its Functionality for Electrochemical Hydrogen Evolution Reaction and Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5900-5908.	2.5	30
20	Manganese Doping of MoSe ₂ Promotes Active Defect Sites for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2019, 11, 25155-25162.	4.0	70
21	Effect of Ru Doping on the Properties of MoSe ₂ Nanoflowers. Journal of Physical Chemistry C, 2019, 123, 1987-1994.	1.5	60
22	Growth Mechanisms and Electronic Properties of Vertically Aligned MoS2. Scientific Reports, 2018, 8, 16480.	1.6	28
23	Cu _{2–<i>x</i>} S–MoS ₂ Nano-Octahedra at the Atomic Scale: Using a Template To Activate the Basal Plane of MoS ₂ for Hydrogen Production. Chemistry of Materials, 2018, 30, 4489-4492.	3.2	48
24	Flatlands in the Holy Land: The Evolution of Layered Materials Research in Israel. Advanced Materials, 2018, 30, e1706581.	11.1	7
25	Enhancing the catalytic activity of the alkaline hydrogen evolution reaction by tuning the S/Se ratio in the Mo(S _x Se _{1â^'x}) ₂ catalyst. Nanoscale, 2018, 10, 16211-16216.	2.8	35
26	Inside-Out: The Role of Buried Interfaces in Hybrid Cu2ZnSnS4–Noble Metal Photocatalysts. Journal of Physical Chemistry C, 2017, 121, 7062-7068.	1.5	18
27	Improved catalytic activity of Mo _{1â^'x} W _x Se ₂ alloy nanoflowers promotes efficient hydrogen evolution reaction in both acidic and alkaline aqueous solutions. Nanoscale, 2017, 9, 13998-14005.	2.8	59
28	Correlating the Structure and Composition of 2D Materials with Their Catalytic Activity. Microscopy and Microanalysis, 2017, 23, 1708-1709.	0.2	0
29	The effect of atomic disorder at the core–shell interface on stacking fault formation in hybrid nanoparticles. Nanoscale, 2016, 8, 17568-17572.	2.8	7
30	Stability of Seeded Rod Photocatalysts: Atomic Scale View. Chemistry of Materials, 2016, 28, 1546-1552.	3.2	25
31	Tuning the surface properties of alloyed CdS _x Se _{1â^x} 2D nanosheets. RSC Advances, 2015, 5, 100834-100837.	1.7	9
32	Revealing Growth Schemes of Nanoparticles in Atomic Resolution: Mapping Stacking Fault Formation and Distribution. Crystal Growth and Design, 2015, 15, 3114-3118.	1.4	7
33	Growth Schemes of Tunable Ultrathin CdSxSe1–x Alloyed Nanostructures at Low Temperatures. Journal of Physical Chemistry C, 2015, 119, 10734-10739.	1.5	16
34	Understanding the formation mechanism and the 3D structure of Mo(S _x Se _{1â^'x}) ₂ nanoflowers. RSC Advances, 2015, 5, 88108-88114.	1.7	27
35	The golden gate to photocatalytic hydrogen production. Journal of Materials Chemistry A, 2015, 3, 19679-19682.	5.2	50
36	Designing Bimetallic Co-Catalysts: A Party of Two. Journal of Physical Chemistry Letters, 2015, 6, 3760-3764.	2.1	44

#	Article	IF	CITATIONS
37	Atomic-Scale Evolution of a Growing Core–Shell Nanoparticle. Journal of the American Chemical Society, 2014, 136, 12564-12567.	6.6	14
38	Solution phase synthesis of homogeneously alloyed ultrathin CdS _x Se _{1â^'x} nanosheets. RSC Advances, 2014, 4, 49842-49845.	1.7	10
39	Orienting MoS2 flakes into ordered films. Journal of Materials Science, 2014, 49, 7353-7359.	1.7	2
40	Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nature Communications, 2014, 5, 4302.	5.8	187
41	Line Defects in Molybdenum Disulfide Layers. Journal of Physical Chemistry C, 2013, 117, 10842-10848.	1.5	127
42	Compound Crystals. , 2013, , 605-638.		2
43	Correlating Electron Tomography and Plasmon Spectroscopy of Single Noble Metal Core–Shell Nanoparticles. Nano Letters, 2012, 12, 145-150.	4.5	47
44	Diffraction from Disordered Stacking Sequences in MoS2and WS2Fullerenes and Nanotubes. Journal of Physical Chemistry C, 2012, 116, 24350-24357.	1.5	49
45	Direct Imaging of Single Au Atoms Within GaAs Nanowires. Nano Letters, 2012, 12, 2352-2356.	4.5	151
46	Highly defective MgO nanosheets from colloidal self-assembly. Journal of Materials Chemistry, 2011, 21, 9532.	6.7	29
47	New Route for Stabilization of 1T-WS ₂ and MoS ₂ Phases. Journal of Physical Chemistry C, 2011, 115, 24586-24591.	1.5	430
48	Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO. Physical Review B, 2011, 83, .	1.1	72
49	Refinement procedure for the image alignment in high-resolution electron tomography. Ultramicroscopy, 2011, 111, 1512-1520.	0.8	42
50	Inside Cover: MoS2 Hybrid Nanostructures: From Octahedral to Quasi-Spherical Shells within Individual Nanoparticles (Angew. Chem. Int. Ed. 8/2011). Angewandte Chemie - International Edition, 2011, 50, 1728-1728.	7.2	0
51	MoS ₂ Hybrid Nanostructures: From Octahedral to Quasiâ€Spherical Shells within Individual Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 1810-1814.	7.2	62
52	Catalyst Composition, Morphology and Reaction Pathway in the Growth of "Super‣ong―Carbon Nanotubes. ChemCatChem, 2010, 2, 1069-1073.	1.8	34
53	Inorganic Nanotubes and Nanostructures. Israel Journal of Chemistry, 2010, 50, 393-394.	1.0	3
54	Hybrid nanoscale inorganic cages. Nature Materials, 2010, 9, 810-815.	13.3	129

#	Article	IF	CITATIONS
55	Stability Criteria of Fullerene-like Nanoparticles: Comparing V2O5 to Layered Metal Dichalcogenides and Dihalides. Materials, 2010, 3, 4428-4445.	1.3	12
56	Hollow V ₂ O ₅ Nanoparticles (Fullerene-Like Analogues) Prepared by Laser Ablation. Journal of the American Chemical Society, 2010, 132, 11214-11222.	6.6	45
57	Bright-field electron tomography of individual inorganic fullerene-like structures. Nanoscale, 2010, 2, 423-428.	2.8	7
58	Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy. Applied Physics A: Materials Science and Processing, 2009, 96, 343-348.	1.1	16
59	Nanoseashells and Nanooctahedra of MoS2: Routes to Inorganic Fullerenes. Chemistry of Materials, 2009, 21, 5627-5636.	3.2	29
60	Fullerene-like WS ₂ nanoparticles and nanotubes by the vapor-phase synthesis of WCl _{<i>n</i>} and H ₂ S. Nanotechnology, 2008, 19, 095601.	1.3	33
61	Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. Proceedings of the United States of America, 2008, 105, 15643-15648.	3.3	77
62	Toward Atomic-Scale Bright-Field Electron Tomography for the Study of Fullerene-Like Nanostructures. Nano Letters, 2008, 8, 891-896.	4.5	61
63	Structure and Stability of Molybdenum Sulfide Fullerenes. Angewandte Chemie - International Edition, 2007, 46, 623-627.	7.2	84
64	Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. European Physical Journal: Special Topics, 2007, 149, 71-101.	1.2	34
65	Structure and Stability of Molybdenum Sulfide Fullerenesâ€. Journal of Physical Chemistry B, 2006, 110, 25399-25410.	1.2	61
66	Closed-cage (fullerene-like) structures of NiBr2. Materials Research Bulletin, 2006, 41, 2137-2146.	2.7	22
67	MoS2 FULLERENE-LIKE NANOPARTICLES AND NANOTUBES USING GAS-PHASE REACTION WITH MoCl5. Nano, 2006, 01, 167-180.	0.5	17
68	Preparation and Structural Characterization of Stable Cs2O Closed-Cage Structures. Angewandte Chemie - International Edition, 2005, 44, 4169-4172.	7.2	26
69	Preparation and Structural Characterization of Stable Cs2O Closed-Cage Structures ChemInform, 2005, 36, no.	0.1	Ο
70	Weak Links and Phase Slip Centers in Superconducting MgB2Wires. Journal of Superconductivity and Novel Magnetism, 2004, 17, 497-502.	0.5	3
71	Transition Metals Dichalcodenides: Growth mechanism, Structure and Catalytic Activity. , 0, ,		0
72	A place where everyone matters $\hat{a} \in \hat{~}$ interfaces in 2D functional nanostructures. , 0, , .		0

#	Article	IF	CITATIONS
73	Transition Metals Dichalcodenides: Growth mechanism, Structure and Catalytic Activity. , 0, , .		0