
Stuart M Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3332435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. Journal of the American Medical Directors Association, 2013, 14, 542-559.	1.2	1,767
2	Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 2008, 586, 151-160.	1.3	873
3	Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. American Journal of Clinical Nutrition, 2009, 89, 161-168.	2.2	755
4	Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology, 2009, 107, 987-992.	1.2	720
5	Mixed muscle protein synthesis and breakdown after resistance exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E99-E107.	1.8	661
6	A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 2018, 52, 376-384.	3.1	645
7	Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 57-62.	1.7	558
8	Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. Journal of Physiology, 2008, 586, 3701-3717.	1.3	494
9	Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 2012, 113, 71-77.	1.2	490
10	IOC consensus statement: dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 2018, 52, 439-455.	3.1	482
11	Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. American Journal of Clinical Nutrition, 2007, 85, 1031-1040.	2.2	433
12	Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. American Journal of Clinical Nutrition, 2007, 86, 373-381.	2.2	400
13	Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men. PLoS ONE, 2010, 5, e12033.	1.1	396
14	Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. British Journal of Nutrition, 2012, 108, 1780-1788.	1.2	379
15	Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing. Nutrition and Metabolism, 2011, 8, 68.	1.3	372
16	Effects of leucine and its metabolite βâ€hydroxyâ€Î²â€methylbutyrate on human skeletal muscle protein metabolism. Journal of Physiology, 2013, 591, 2911-2923.	1.3	372
17	Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. Journal of Physiology, 2013, 591, 2319-2331.	1.3	341
18	Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Journal of Physiology, 2008, 586, 6049-6061.	1.3	337

#	Article	IF	CITATIONS
19	Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E628-E634.	1.8	325
20	Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 2011, 29, S29-S38.	1.0	324
21	Two Weeks of Reduced Activity Decreases Leg Lean Mass and Induces "Anabolic Resistance―of Myofibrillar Protein Synthesis in Healthy Elderly. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2604-2612.	1.8	306
22	High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of Applied Physiology, 2011, 110, 309-317.	1.2	292
23	IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 104-125.	1.0	292
24	Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. Journal of Applied Physiology, 2009, 106, 1692-1701.	1.2	278
25	Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 2016, 121, 129-138.	1.2	276
26	The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age and Ageing, 2019, 48, 48-56.	0.7	265
27	Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. Journal of Physiology, 2009, 587, 897-904.	1.3	261
28	Enhanced Amino Acid Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after Resistance Exercise in Young Men1–3. Journal of Nutrition, 2011, 141, 568-573.	1.3	255
29	Protein requirements and supplementation in strength sports. Nutrition, 2004, 20, 689-695.	1.1	250
30	Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. Journal of Physiology, 2010, 588, 3119-3130.	1.3	248
31	Muscle time under tension during resistance exercise stimulates differential muscle protein subâ€fractional synthetic responses in men. Journal of Physiology, 2012, 590, 351-362.	1.3	245
32	Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. Journal of Applied Physiology, 2009, 107, 645-654.	1.2	244
33	Gender differences in leucine kinetics and nitrogen balance in endurance athletes. Journal of Applied Physiology, 1993, 75, 2134-2141.	1.2	243
34	Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. Journal of Physiology, 2012, 590, 2751-2765.	1.3	241
35	Resistance trainingâ€induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. Journal of Physiology, 2016, 594, 5209-5222.	1.3	236
36	Protein "requirements―beyond the RDA: implications for optimizing health. Applied Physiology, Nutrition and Metabolism, 2016, 41, 565-572.	0.9	236

#	Article	IF	CITATIONS
37	Evaluation of protein requirements for trained strength athletes. Journal of Applied Physiology, 1992, 73, 1986-1995.	1.2	235
38	Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. American Journal of Clinical Nutrition, 2014, 99, 276-286.	2.2	234
39	Effects of training duration on substrate turnover and oxidation during exercise. Journal of Applied Physiology, 1996, 81, 2182-2191.	1.2	230
40	Resistance exerciseâ€induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. Journal of Physiology, 2009, 587, 5239-5247.	1.3	229
41	Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate <i>v.</i> micellar casein at rest and after resistance exercise in elderly men. British Journal of Nutrition, 2012, 108, 958-962.	1.2	229
42	Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. Journal of Applied Physiology, 2010, 108, 60-67.	1.2	227
43	Carbohydrate loading and metabolism during exercise in men and women. Journal of Applied Physiology, 1995, 78, 1360-1368.	1.2	222
44	Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutrition and Metabolism, 2012, 9, 57.	1.3	217
45	Supplemental Protein in Support of Muscle Mass and Health: Advantage Whey. Journal of Food Science, 2015, 80, A8-A15.	1.5	217
46	Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1153-E1159.	1.8	215
47	Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. American Journal of Clinical Nutrition, 2011, 94, 795-803.	2.2	214
48	The Role of Milk- and Soy-Based Protein in Support of Muscle Protein Synthesis and Muscle Protein Accretion in Young and Elderly Persons. Journal of the American College of Nutrition, 2009, 28, 343-354.	1.1	202
49	Cellular adaptation to repeated eccentric exercise-induced muscle damage. Journal of Applied Physiology, 2001, 91, 1669-1678.	1.2	198
50	Resistance training reduces the acute exercise-induced increase in muscle protein turnover. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E118-E124.	1.8	190
51	Increased Consumption of Dairy Foods and Protein during Diet- and Exercise-Induced Weight Loss Promotes Fat Mass Loss and Lean Mass Gain in Overweight and Obese Premenopausal Women. Journal of Nutrition, 2011, 141, 1626-1634.	1.3	183
52	Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord, 2005, 43, 291-298.	0.9	182
53	Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1970-R1976.	0.9	181
54	Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. Journal of Applied Physiology, 1995, 79, 1914-1920.	1.2	180

#	Article	IF	CITATIONS
55	Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E580-E587.	1.8	178
56	Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology, 2015, 6, 245.	1.3	175
57	A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Medicine, 2014, 44, 71-77.	3.1	173
58	Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. Journal of Applied Physiology, 2009, 106, 1394-1402.	1.2	172
59	Nutritional modulation of training-induced skeletal muscle adaptations. Journal of Applied Physiology, 2011, 110, 834-845.	1.2	170
60	Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. American Journal of Clinical Nutrition, 2016, 103, 738-746.	2.2	168
61	Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated with Resistance Training-Induced Muscle Hypertrophy in Young Men. PLoS ONE, 2014, 9, e89431.	1.1	167
62	Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 2005, 98, 1768-1776.	1.2	160
63	A Review of Resistance Training-Induced Changes in Skeletal Muscle Protein Synthesis and Their Contribution to Hypertrophy. Sports Medicine, 2015, 45, 801-807.	3.1	155
64	Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance. Clinical Nutrition, 2016, 35, 1506-1511.	2.3	154
65	Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E989-E997.	1.8	150
66	Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients, 2018, 10, 180.	1.7	149
67	Creatine Supplementation during Resistance Training in Older Adults—A Meta-analysis. Medicine and Science in Sports and Exercise, 2014, 46, 1194-1203.	0.2	148
68	Limb Immobilization Induces a Coordinate Down-Regulation of Mitochondrial and Other Metabolic Pathways in Men and Women. PLoS ONE, 2009, 4, e6518.	1.1	147
69	Maximizing muscle protein anabolism: the role of protein quality. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 66-71.	1.3	146
70	Resistance Exercise Training as a Primary Countermeasure to Age-Related Chronic Disease. Frontiers in Physiology, 2019, 10, 645.	1.3	146
71	Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, 2005, 39, 289-295.	1.3	145
72	Coâ€expression of IGFâ€1 family members with myogenic regulatory factors following acute damaging muscleâ€lengthening contractions in humans. Journal of Physiology, 2008, 586, 5549-5560.	1.3	145

#	Article	IF	CITATIONS
73	Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E864-E871.	1.8	143
74	Dairy food consumption and body weight and fatness studied longitudinally over the adolescent period. International Journal of Obesity, 2003, 27, 1106-1113.	1.6	142
75	Dietary Protein to Support Anabolism with Resistance Exercise in Young Men. Journal of the American College of Nutrition, 2005, 24, 134S-139S.	1.1	142
76	Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. European Journal of Applied Physiology, 2004, 92, 399-406.	1.2	141
77	Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance?. Advances in Nutrition, 2018, 9, 171-182.	2.9	141
78	Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Canadian Journal of Physiology and Pharmacology, 2002, 80, 1045-1053.	0.7	140
79	Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. Journal of Physiology, 2005, 568, 283-290.	1.3	138
80	Dietary protein requirements and adaptive advantages in athletes. British Journal of Nutrition, 2012, 108, S158-S167.	1.2	138
81	Body Composition and Strength Changes in Women with Milk and Resistance Exercise. Medicine and Science in Sports and Exercise, 2010, 42, 1122-1130.	0.2	136
82	Contraction-induced muscle damage is unaffected by vitamin E supplementation. Medicine and Science in Sports and Exercise, 2002, 34, 798-805.	0.2	134
83	Endothelial function of young healthy males following whole body resistance training. Journal of Applied Physiology, 2005, 98, 2185-2190.	1.2	134
84	Resistance training alters the response of fed state mixed muscle protein synthesis in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R172-R178.	0.9	134
85	Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy. PLoS ONE, 2013, 8, e78636.	1.1	134
86	Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1120-R1128.	0.9	133
87	Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. European Journal of Applied Physiology, 2016, 116, 49-56.	1.2	131
88	Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. American Journal of Clinical Nutrition, 2015, 101, 1346S-1352S.	2.2	130
89	Carbohydrate Does Not Augment Exercise-Induced Protein Accretion versus Protein Alone. Medicine and Science in Sports and Exercise, 2011, 43, 1154-1161.	0.2	127
90	Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. Journal of Applied Physiology, 2005, 99, 1085-1092.	1.2	124

#	Article	IF	CITATIONS
91	Gender differences in carbohydrate loading are related to energy intake. Journal of Applied Physiology, 2001, 91, 225-230.	1.2	123
92	Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutrition and Metabolism, 2012, 9, 40.	1.3	123
93	Association of Interleukin-6 Signalling with the Muscle Stem Cell Response Following Muscle-Lengthening Contractions in Humans. PLoS ONE, 2009, 4, e6027.	1.1	120
94	Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E265-E272.	1.8	118
95	Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E594-E604.	1.8	117
96	Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord, 2005, 43, 649-657.	0.9	115
97	The Acute Satellite Cell Response and Skeletal Muscle Hypertrophy following Resistance Training. PLoS ONE, 2014, 9, e109739.	1.1	115
98	Resistance Training with Vascular Occlusion: Metabolic Adaptations in Human Muscle. Medicine and Science in Sports and Exercise, 2003, 35, 1203-1208.	0.2	111
99	Effect of whole body resistance training on arterial compliance in young men. Experimental Physiology, 2005, 90, 645-651.	0.9	111
100	Nutritional Supplements in Support of Resistance Exercise to Counter Age-Related Sarcopenia. Advances in Nutrition, 2015, 6, 452-460.	2.9	111
101	UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. British Journal of Sports Medicine, 2021, 55, 416-416.	3.1	111
102	Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. Journal of Sports Sciences, 2011, 29, S67-S77.	1.0	109
103	Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. European Journal of Applied Physiology, 2012, 112, 2693-2702.	1.2	109
104	The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutrition and Metabolism, 2016, 13, 64.	1.3	108
105	Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1025-E1032.	1.8	107
106	Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower- and higher-protein diets: a parallel-group crossover study. American Journal of Clinical Nutrition, 2016, 104, 1594-1606.	2.2	103
107	Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta Physiologica, 2011, 201, 365-372.	1.8	101
108	Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. European Journal of Applied Physiology, 2006, 98, 546-555.	1.2	99

#	Article	IF	CITATIONS
109	Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. Journal of Applied Physiology, 2012, 112, 1805-1813.	1.2	99
110	Uncomplicated Resistance Training and Health-Related Outcomes. Current Sports Medicine Reports, 2010, 9, 208-213.	0.5	97
111	Omegaâ€3 fatty acid supplementation attenuates skeletal muscle disuse atrophy during two weeks of unilateral leg immobilization in healthy young women. FASEB Journal, 2019, 33, 4586-4597.	0.2	96
112	Contractile and Nutritional Regulation of Human Muscle Growth. Exercise and Sport Sciences Reviews, 2003, 31, 127-131.	1.6	95
113	Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Applied Physiology, Nutrition and Metabolism, 2007, 32, 1132-1138.	0.9	95
114	Contractionâ€induced muscle damage in humans following calcium channel blocker administration. Journal of Physiology, 2002, 544, 849-859.	1.3	94
115	Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. Journal of Applied Physiology, 2010, 109, 431-438.	1.2	94
116	Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women. Journal of Nutrition, 2018, 148, 1088-1095.	1.3	94
117	Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E734-E743.	1.8	93
118	Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Applied Physiology, Nutrition and Metabolism, 2006, 31, 495-501.	0.9	92
119	Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. Journal of Applied Physiology, 2017, 122, 541-548.	1.2	92
120	Dose-dependent responses of myofibrillar protein synthesis with beef ingestion are enhanced with resistance exercise in middle-aged men. Applied Physiology, Nutrition and Metabolism, 2013, 38, 120-125.	0.9	91
121	Whey Protein Supplementation Preserves Postprandial Myofibrillar Protein Synthesis during Short-Term Energy Restriction in Overweight and Obese Adults. Journal of Nutrition, 2015, 145, 246-252.	1.3	91
122	Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 547-554.	2.9	91
123	Nutrient-rich meat proteins in offsetting age-related muscle loss. Meat Science, 2012, 92, 174-178.	2.7	90
124	Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Frontiers in Nutrition, 2017, 4, 13.	1.6	90
125	Defining anabolic resistance: implications for delivery of clinical care nutrition. Current Opinion in Critical Care, 2018, 24, 124-130.	1.6	90
126	Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovascular Research, 1996, 31, 278-286.	1.8	89

#	Article	IF	CITATIONS
127	Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury?. Applied Physiology, Nutrition and Metabolism, 2006, 31, 283-291.	0.9	88
128	Alterations in human muscle protein metabolism with aging: Protein and exercise as countermeasures to offset sarcopenia. BioFactors, 2014, 40, 199-205.	2.6	88
129	A higher effort-based paradigm in physical activity and exercise for public health: making the case for a greater emphasis on resistance training. BMC Public Health, 2017, 17, 300.	1.2	88
130	Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle and Nerve, 2008, 38, 1434-1442.	1.0	87
131	Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1024-1029.	1.7	87
132	A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS ONE, 2017, 12, e0181387.	1.1	87
133	Dietary protein for athletes: from requirements to metabolic advantage. Applied Physiology, Nutrition and Metabolism, 2006, 31, 647-654.	0.9	86
134	Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects)This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference– Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process Applied Physiology, Nutrition and Metabolism, 2009, 34, 403-410.	0.9	86
135	Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle and Nerve, 2004, 30, 61-68.	1.0	85
136	Anabolic Processes in Human Skeletal Muscle: Restoring the Identities of Growth Hormone and Testosterone. Physician and Sportsmedicine, 2010, 38, 97-104.	1.0	84
137	Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. Journal of Physiology, 2019, 597, 4601-4613.	1.3	84
138	Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 170-177.	1.0	83
139	Short-Term Training: When Do Repeated Bouts of Resistance Exercise Become Training?. Applied Physiology, Nutrition, and Metabolism, 2000, 25, 185-193.	1.7	79
140	Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. International Journal of Biochemistry and Cell Biology, 2010, 42, 1371-1375.	1.2	79
141	CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. Journal of Physiology, 2014, 592, 5341-5343.	1.3	79
142	Protein leucine content is a determinant of shorter- and longer-term muscle protein synthetic responses at rest and following resistance exercise in healthy older women: a randomized, controlled trial. American Journal of Clinical Nutrition, 2018, 107, 217-226.	2.2	79
143	Failed Recovery of Glycemic Control and Myofibrillar Protein Synthesis With 2 wk of Physical Inactivity in Overweight, Prediabetic Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1070-1077.	1.7	79
144	The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures. Frontiers in Nutrition, 2019, 6, 75.	1.6	79

#	Article	IF	CITATIONS
145	Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells, 2020, 9, 1658.	1.8	79
146	Diets Higher in Dairy Foods and Dietary Protein Support Bone Health during Diet- and Exercise-Induced Weight Loss in Overweight and Obese Premenopausal Women. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 251-260.	1.8	78
147	Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. Journal of Applied Physiology, 2012, 112, 1992-2001.	1.2	78
148	Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise. Nutrition and Metabolism, 2010, 7, 65.	1.3	77
149	Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiological Reports, 2015, 3, e12493.	0.7	77
150	Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. European Journal of Applied Physiology, 2011, 111, 1473-1483.	1.2	76
151	MUSCLE DISUSE AS A PIVOTAL PROBLEM IN SARCOPENIA-RELATED MUSCLE LOSS AND DYSFUNCTION. Journal of Frailty & amp; Aging, the, 2016, 5, 1-9.	0.8	76
152	A Critical Examination of Dietary Protein Requirements, Benefits, and Excesses in Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2007, 17, S58-S76.	1.0	75
153	Summary Points and Consensus Recommendations From the International Protein Summit. Nutrition in Clinical Practice, 2017, 32, 142S-151S.	1.1	75
154	Resistance exercise and nutrition to counteract muscle wasting. Applied Physiology, Nutrition and Metabolism, 2009, 34, 817-828.	0.9	74
155	Differential Metabolomics for Quantitative Assessment of Oxidative Stress with Strenuous Exercise and Nutritional Intervention: Thiol-Specific Regulation of Cellular Metabolism with <i>N</i> -Acetyl- <scp>l</scp> -Cysteine Pretreatment. Analytical Chemistry, 2010, 82, 2959-2968.	3.2	74
156	Resistance training reduces whole-body protein turnover and improves net protein retention in untrained young males. Applied Physiology, Nutrition and Metabolism, 2006, 31, 557-564.	0.9	73
157	Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent Training. PLoS ONE, 2014, 9, e88384.	1.1	73
158	Resistance exercise decreases elF2Bε phosphorylation and potentiates the feeding-induced stimulation of p70 ^{S6K1} and rpS6 in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R604-R610.	0.9	72
159	Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiological Reports, 2016, 4, e12715.	0.7	72
160	Resistance exercise: good for more than just Grandma and Grandpa's muscles. Applied Physiology, Nutrition and Metabolism, 2007, 32, 1198-1205.	0.9	71
161	Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 630-634.	1.3	71
162	Sex differences in mitochondrial respiratory function in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R909-R915.	0.9	70

#	Article	IF	CITATIONS
163	Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 2011, 29, S29-S38.	1.0	70
164	Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Applied Physiology, Nutrition and Metabolism, 2012, 37, 551-554.	0.9	69
165	Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB Journal, 2018, 32, 265-275.	0.2	69
166	Bolus Arginine Supplementation Affects neither Muscle Blood Flow nor Muscle Protein Synthesis in Young Men at Rest or After Resistance Exercise. Journal of Nutrition, 2011, 141, 195-200.	1.3	68
167	Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids, 2013, 45, 231-240.	1.2	68
168	Muscle Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men. Frontiers in Physiology, 2018, 9, 1373.	1.3	68
169	Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Applied Physiology, Nutrition and Metabolism, 2010, 35, 125-133.	0.9	67
170	The impact of exercise and nutrition on the regulation of skeletal muscle mass. Journal of Physiology, 2019, 597, 1251-1258.	1.3	67
171	Growing older with health and vitality: a nexus of physical activity, exercise and nutrition. Biogerontology, 2016, 17, 529-546.	2.0	66
172	Systematic review and metaâ€analysis of protein intake to support muscle mass and function in healthy adults. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 795-810.	2.9	65
173	Mind over muscle?. Body Image, 2005, 2, 363-372.	1.9	64
174	Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutrition and Metabolism, 2012, 9, 91.	1.3	64
175	DIETARY PROTEIN TO MAINTAIN MUSCLE MASS IN AGING: A CASE FOR PER-MEAL PROTEIN RECOMMENDATIONS. Journal of Frailty & amp; Aging,the, 2016, 5, 1-10.	0.8	64
176	Interactions between exercise and nutrition to prevent muscle waste during ageing. British Journal of Clinical Pharmacology, 2013, 75, 708-715.	1.1	63
177	A Brief Review of Higher Dietary Protein Diets in Weight Loss: A Focus on Athletes. Sports Medicine, 2014, 44, 149-153.	3.1	62
178	Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two. Applied Physiology, Nutrition and Metabolism, 2017, 42, 563-570.	0.9	61
179	Creatine-dextrose and protein-dextrose induce similar strength gains during training. Medicine and Science in Sports and Exercise, 2001, 33, 2044-2052.	0.2	60
180	Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. Journal of Applied Physiology, 2004, 97, 716-724.	1.2	60

#	Article	IF	CITATIONS
181	What is the Optimal Amount of Protein to Support Post-Exercise Skeletal Muscle Reconditioning in the Older Adult?. Sports Medicine, 2016, 46, 1205-1212.	3.1	60
182	Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients, 2020, 12, 2057.	1.7	59
183	Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans. Nutrition and Metabolism, 2011, 8, 15.	1.3	58
184	'Changes in Kidney Function Do Not Differ between Healthy Adults Consuming Higher- Compared with Lower- or Normal-Protein Diets: A Systematic Review and Meta-Analysis. Journal of Nutrition, 2018, 148, 1760-1775.	1.3	58
185	The science of muscle hypertrophy: making dietary protein count. Proceedings of the Nutrition Society, 2011, 70, 100-103.	0.4	57
186	Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. Journal of Applied Physiology, 2012, 113, 206-214.	1.2	57
187	Lowâ€volume resistance exercise attenuates the decline in strength and muscle mass associated with immobilization. Muscle and Nerve, 2010, 42, 539-546.	1.0	55
188	Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. European Journal of Applied Physiology, 2012, 112, 1587-1592.	1.2	55
189	Training for strength and hypertrophy: an evidence-based approach. Current Opinion in Physiology, 2019, 10, 90-95.	0.9	55
190	Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise. Journal of Physiology, 2015, 593, 4275-4284.	1.3	54
191	Exercise and the Regulation of Skeletal Muscle Hypertrophy. Progress in Molecular Biology and Translational Science, 2015, 135, 153-173.	0.9	54
192	Circulating MicroRNA Responses between â€~High' and â€~Low' Responders to a 16-Wk Diet and Exercise Weight Loss Intervention. PLoS ONE, 2016, 11, e0152545.	1.1	54
193	The Acute Effects of Androstenedione Supplementation in Healthy Young Males. Applied Physiology, Nutrition, and Metabolism, 2000, 25, 68-78.	1.7	53
194	Preexercise Aminoacidemia and Muscle Protein Synthesis after Resistance Exercise. Medicine and Science in Sports and Exercise, 2012, 44, 1968-1977.	0.2	53
195	Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutrition in Clinical Practice, 2017, 32, 121S-127S.	1.1	53
196	Are Acute Post–Resistance Exercise Increases in Testosterone, Growth Hormone, and IGF-1 Necessary to Stimulate Skeletal Muscle Anabolism and Hypertrophy?. Medicine and Science in Sports and Exercise, 2013, 45, 2044-2051.	0.2	51
197	Citrulline does not enhance blood flow, microvascular circulation, or myofibrillar protein synthesis in elderly men at rest or following exercise. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E71-E83.	1.8	51
198	Protein–Leucine Fed Dose Effects on Muscle Protein Synthesis after Endurance Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 547-555.	0.2	51

#	Article	IF	CITATIONS
199	High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Medicine, 2021, 51, 1317-1330.	3.1	51
200	Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss,. American Journal of Clinical Nutrition, 2016, 104, 557-565.	2.2	50
201	A randomized controlled trial of the impact of protein supplementation on leg lean mass and integrated muscle protein synthesis during inactivity and energy restriction in older persons. American Journal of Clinical Nutrition, 2018, 108, 1060-1068.	2.2	50
202	Resistance Training Reduces Fasted- and Fed-State Leucine Turnover and Increases Dietary Nitrogen Retention in Previously Untrained Young Men1. Journal of Nutrition, 2007, 137, 985-991.	1.3	49
203	Protein Ingestion Increases Myofibrillar Protein Synthesis after Concurrent Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 82-91.	0.2	49
204	What is the relationship between the acute muscle protein synthesis response and changes in muscle mass?. Journal of Applied Physiology, 2015, 118, 495-497.	1.2	48
205	Altered muscle satellite cell activation following 16 wk of resistance training in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R85-R92.	0.9	45
206	Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise. American Journal of Physiology - Cell Physiology, 2017, 313, C604-C611.	2.1	45
207	Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. Journal of Physiology, 2019, 597, 105-119.	1.3	45
208	Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000Research, 2020, 9, 141.	0.8	44
209	Increased clearance of lactate after short-term training in men. Journal of Applied Physiology, 1995, 79, 1862-1869.	1.2	43
210	Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E456-E462.	1.8	42
211	Protein-Leucine Fed Dose Effects on Muscle Protein Synthesis after Endurance Exercise. Medicine and Science in Sports and Exercise, 2014, 46, 98-99.	0.2	42
212	Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. Journal of Physiology, 2018, 596, 2091-2120.	1.3	42
213	Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men. PLoS ONE, 2018, 13, e0191039.	1.1	42
214	Fluid and electrolyte hormonal responses to exercise and acute plasma volume expansion. Journal of Applied Physiology, 1996, 81, 2386-2392.	1.2	41
215	A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Research, 2018, 46, 7772-7792.	6.5	41
216	Metabolic Perturbations from Step Reduction in Older Persons at Risk for Sarcopenia: Plasma Biomarkers of Abrupt Changes in Physical Activity. Metabolites, 2019, 9, 134.	1.3	40

#	Article	IF	CITATIONS
217	Supplementation with dietary ï‰â€3 mitigates immobilizationâ€induced reductions in skeletal muscle mitochondrial respiration in young women. FASEB Journal, 2019, 33, 8232-8240.	0.2	40
218	Resistance Exercise–induced Changes in Muscle Phenotype Are Load Dependent. Medicine and Science in Sports and Exercise, 2019, 51, 2578-2585.	0.2	40
219	Whey protein but not collagen peptides stimulate acute and longer-term muscle protein synthesis with and without resistance exercise in healthy older women: a randomized controlled trial. American Journal of Clinical Nutrition, 2020, 111, 708-718.	2.2	40
220	Acute β-adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R25-R33.	0.9	39
221	The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiologica, 2015, 215, 177-190.	1.8	39
222	A Protein–Leucine Supplement Increases Branched-Chain Amino Acid and Nitrogen Turnover But Not Performance. Medicine and Science in Sports and Exercise, 2012, 44, 57-68.	0.2	37
223	Body image change in obese and overweight women enrolled in a weight-loss intervention: The importance of perceived versus actual physical changes. Body Image, 2012, 9, 311-317.	1.9	37
224	Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiological Genomics, 2016, 48, 21-32.	1.0	37
225	Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient. Nutrition in Clinical Practice, 2017, 32, 112S-120S.	1.1	37
226	Exercise training impacts skeletal muscle gene expression related to the kynurenine pathway. American Journal of Physiology - Cell Physiology, 2019, 316, C444-C448.	2.1	37
227	Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. British Journal of Sports Medicine, 2020, 54, 573-581.	3.1	37
228	Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. European Journal of Applied Physiology, 2018, 118, 2607-2616.	1.2	36
229	Optimizing Adult Protein Intake During Catabolic Health Conditions. Advances in Nutrition, 2020, 11, S1058-S1069.	2.9	36
230	Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review. International Journal of Sport Nutrition and Exercise Metabolism, 2016, 26, 168-178.	1.0	35
231	Arterial Stiffness Is Reduced Regardless of Resistance Training Load in Young Men. Medicine and Science in Sports and Exercise, 2017, 49, 342-348.	0.2	35
232	Nutrient-rich, high-quality, protein-containing dairy foods in combination with exercise in aging persons to mitigate sarcopenia. Nutrition Reviews, 2019, 77, 216-229.	2.6	35
233	Lowâ€oad resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 747-754.	2.9	35
234	Myofibrillar protein synthesis and muscle hypertrophy individualized responses to systematically changing resistance training variables in trained young men. Journal of Applied Physiology, 2019, 127, 806-815.	1.2	35

#	Article	IF	CITATIONS
235	The effect of sleep restriction, with or without highâ€intensity interval exercise, on myofibrillar protein synthesis in healthy young men. Journal of Physiology, 2020, 598, 1523-1536.	1.3	35
236	Variability in Estimating Eccentric Contraction-Induced Muscle Damage and Inflammation in Humans. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 516-526.	1.7	34
237	Greater Electromyographic Responses Do Not Imply Greater Motor Unit Recruitment and â€~Hypertrophic Potential' Cannot Be Inferred. Journal of Strength and Conditioning Research, 2017, 31, e1-e4.	1.0	34
238	Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. International Journal of Strength and Conditioning, 2021, 1, .	0.2	34
239	Considerations for protein intake in managing weight loss in athletes. European Journal of Sport Science, 2015, 15, 21-28.	1.4	33
240	Dietary Protein for Training Adaptation and Body Composition Manipulation in Track and Field Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 165-174.	1.0	33
241	Nutritional needs of elite endurance athletes. Part I: Carbohydrate and fluid requirements. European Journal of Sport Science, 2005, 5, 3-14.	1.4	32
242	Resistance training minimizes catabolic effects induced by sleep deprivation in rats. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1143-1150.	0.9	32
243	PRESENT 2020: Text Expanding on the Checklist for Proper Reporting of Evidence in Sport and Exercise Nutrition Trials. International Journal of Sport Nutrition and Exercise Metabolism, 2020, 30, 2-13.	1.0	32
244	The Effect of Body Weight-Supported Treadmill Training on Muscle Morphology in an Individual With Chronic, Motor- Complete Spinal Cord Injury: A Case Study. Journal of Spinal Cord Medicine, 2006, 29, 167-171.	0.7	31
245	Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1335-R1341.	0.9	31
246	What Is the Role of Nutritional Supplements in Support of Total Hip Replacement and Total Knee Replacement Surgeries? A Systematic Review. Nutrients, 2018, 10, 820.	1.7	31
247	Dietary Protein for Muscle Hypertrophy. Nestle Nutrition Institute Workshop Series, 2013, 76, 73-84.	1.5	30
248	The Reliability of 4-Minute and 20-Minute Time Trials and Their Relationships to Functional Threshold Power in Trained Cyclists. International Journal of Sports Physiology and Performance, 2019, 14, 38-45.	1.1	30
249	Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Reports, 2020, 32, 107980.	2.9	30
250	The importance of protein sources to support muscle anabolism in cancer: An expert group opinion. Clinical Nutrition, 2022, 41, 192-201.	2.3	30
251	Nutrient interaction for optimal protein anabolism in resistance exercise. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 226-232.	1.3	29
252	Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R603-R612.	0.9	28

#	Article	IF	CITATIONS
253	Attenuation of Resting but Not Load-Mediated Protein Synthesis in Prostate Cancer Patients on Androgen Deprivation. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1076-1083.	1.8	28
254	Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms. Molecular Metabolism, 2021, 43, 101110.	3.0	28
255	Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. , 2021, 11, 2249-2278.		28
256	Increasing calcium intake in young women through gain-framed, targeted messages: A randomised controlled trial. Psychology and Health, 2011, 26, 531-547.	1.2	27
257	A Novel Amino Acid Composition Ameliorates Short-Term Muscle Disuse Atrophy in Healthy Young Men. Frontiers in Nutrition, 2019, 6, 105.	1.6	27
258	Insulin and muscle protein turnover in humans: stimulatory, permissive, inhibitory, or all of the above?. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E731-E731.	1.8	26
259	Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies. American Journal of Physiology - Cell Physiology, 2022, 322, C1068-C1084.	2.1	26
260	Leucine Metabolites Do Not Enhance Training-induced Performance or Muscle Thickness. Medicine and Science in Sports and Exercise, 2019, 51, 56-64.	0.2	25
261	Addition of glutamine to essential amino acids and carbohydrate does not enhance anabolism in young human males following exercise. Applied Physiology, Nutrition and Metabolism, 2006, 31, 518-529.	0.9	24
262	Big claims for big weights but with little evidence. European Journal of Applied Physiology, 2013, 113, 267-268.	1.2	24
263	Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women. Nutrients, 2020, 12, 1235.	1.7	24
264	Lower Integrated Muscle Protein Synthesis in Masters Compared with Younger Athletes. Medicine and Science in Sports and Exercise, 2016, 48, 1613-1618.	0.2	23
265	Leucine supplementation is anti-atrophic during paradoxical sleep deprivation in rats. Amino Acids, 2016, 48, 949-957.	1.2	23
266	Lactalbumin, Not Collagen, Augments Muscle Protein Synthesis with Aerobic Exercise. Medicine and Science in Sports and Exercise, 2020, 52, 1394-1403.	0.2	23
267	The Impact of Coronavirus (COVID-19) Related Public-Health Measures on Training Behaviours of Individuals Previously Participating in Resistance Training: A Cross-Sectional Survey Study. Sports Medicine, 2021, 51, 1561-1580.	3.1	23
268	Supplement-based nutritional strategies to tackle frailty: A multifactorial, double-blind, randomized placebo-controlled trial. Clinical Nutrition, 2021, 40, 4849-4858.	2.3	23
269	Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Frontiers in Physiology, 2021, 12, 725866.	1.3	23
270	Declines in muscle protein synthesis account for shortâ€ŧerm muscle disuse atrophy in humans in the absence of increased muscle protein breakdown. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2005-2016.	2.9	23

#	Article	IF	CITATIONS
271	Effects of acute expansion of plasma volume on cardiovascular and thermal function during prolonged exercise. European Journal of Applied Physiology, 1997, 76, 356-362.	1.2	22
272	Translating "protein foods―from the new Canada's Food Guide to consumers: knowledge gaps and recommendations. Applied Physiology, Nutrition and Metabolism, 2020, 45, 1311-1323.	0.9	22
273	An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise–Induced Human Skeletal Muscle Hypertrophy. Medicine and Science in Sports and Exercise, 2022, 54, 1546-1559.	0.2	22
274	Reliability of results and interpretation of measures of 3-methylhistidine in muscle interstitium as marker of muscle proteolysis. Journal of Applied Physiology, 2008, 105, 1380-1381.	1.2	21
275	A randomized trial of highâ€dairyâ€protein, variableâ€carbohydrate diets and exercise on body composition in adults with obesity. Obesity, 2016, 24, 1035-1045.	1.5	21
276	Microvascular adaptations to resistance training are independent of load in resistance-trained young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R267-R273.	0.9	21
277	Equivalent Hypertrophy and Strength Gains in β-Hydroxy-β-Methylbutyrate- or Leucine-supplemented Men. Medicine and Science in Sports and Exercise, 2019, 51, 65-74.	0.2	21
278	Muscle Mass Loss in the Older Critically III Population: Potential Therapeutic Strategies. Nutrition in Clinical Practice, 2020, 35, 607-616.	1.1	21
279	Impact of Milk Consumption and Resistance Training on Body Composition of Female Athletes. Medicine and Sport Science, 2012, 59, 94-103.	1.4	20
280	Anabolic-Androgenic Steroid Use in Sports, Health, and Society. Medicine and Science in Sports and Exercise, 2021, 53, 1778-1794.	0.2	20
281	Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial. Applied Physiology, Nutrition and Metabolism, 2015, 40, 199-202.	0.9	19
282	Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiological Reports, 2021, 9, e14683.	0.7	19
283	Be Healthy in Pregnancy (BHIP): A Randomized Controlled Trial of Nutrition and Exercise Intervention from Early Pregnancy to Achieve Recommended Gestational Weight Gain. Nutrients, 2022, 14, 810.	1.7	19
284	IGF-1 colocalizes with muscle satellite cells following acute exercise in humans. Applied Physiology, Nutrition and Metabolism, 2014, 39, 514-518.	0.9	18
285	Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE, 2020, 15, e0233134.	1.1	18
286	Gene Expression, Fiber Type, and Strength Are Similar Between Left and Right Legs in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1088-1095.	1.7	17
287	Strength and hypertrophy with resistance training: chasing a hormonal ghost. European Journal of Applied Physiology, 2012, 112, 1981-1983.	1.2	17
288	Endothelial Function Increases after a 16-Week Diet and Exercise Intervention in Overweight and Obese Young Women. BioMed Research International, 2014, 2014, 1-10.	0.9	17

#	Article	IF	CITATIONS
289	Structured diet and exercise guidance in pregnancy to improve health in women and their offspring: study protocol for the Be Healthy in Pregnancy (BHIP) randomized controlled trial. Trials, 2018, 19, 691.	0.7	17
290	Brief Vigorous Stair Climbing Effectively Improves Cardiorespiratory Fitness in Patients With Coronary Artery Disease: A Randomized Trial. Frontiers in Sports and Active Living, 2021, 3, 630912.	0.9	17
291	Changes in Body Composition and Performance With Supplemental HMBâ€FA+ATP. Journal of Strength and Conditioning Research, 2017, 31, e71-e72.	1.0	16
292	Comparable Rates of Integrated Myofibrillar Protein Synthesis Between Endurance-Trained Master Athletes and Untrained Older Individuals. Frontiers in Physiology, 2019, 10, 1084.	1.3	16
293	Short-term unilateral leg immobilization alters peripheral but not central arterial structure and function in healthy young humans. European Journal of Applied Physiology, 2011, 111, 203-210.	1.2	15
294	Exceptional body composition changes attributed to collagen peptide supplementation and resistance training in older sarcopenic men. British Journal of Nutrition, 2016, 116, 569-570.	1.2	15
295	An inability to distinguish edematous swelling from true hypertrophy still prevents a completely accurate interpretation of the time course of muscle hypertrophy. European Journal of Applied Physiology, 2016, 116, 445-446.	1.2	15
296	Ageâ€related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB Journal, 2020, 34, 8975-8989.	0.2	15
297	Discrepancies in publications related to HMB-FA and ATP supplementation. Nutrition and Metabolism, 2017, 14, 42.	1.3	14
298	A Multi-Ingredient Nutritional Supplement in Combination With Resistance Exercise and High-Intensity Interval Training Improves Cognitive Function and Increases N-3 Index in Healthy Older Men: A Randomized Controlled Trial. Frontiers in Aging Neuroscience, 2019, 11, 107.	1.7	14
299	Integrated Myofibrillar Protein Synthesis in Recovery From Unaccustomed and Accustomed Resistance Exercise With and Without Multi-ingredient Supplementation in Overweight Older Men. Frontiers in Nutrition, 2019, 6, 40.	1.6	14
300	Supplementation with the Leucine Metabolite β-hydroxy-β-methylbutyrate (HMB) does not Improve Resistance Exercise-Induced Changes in Body Composition or Strength in Young Subjects: A Systematic Review and Meta-Analysis. Nutrients, 2020, 12, 1523.	1.7	14
301	Plant-based food patterns to stimulate muscle protein synthesis and support muscle mass in humans: a narrative review. Applied Physiology, Nutrition and Metabolism, 2022, 47, 700-710.	0.9	14
302	Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 412-417.	1.3	13
303	A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 299-302.	0.9	13
304	Ingestion of a Multi-Ingredient Supplement Does Not Alter Exercise-Induced Satellite Cell Responses in Older Men. Journal of Nutrition, 2018, 148, 891-899.	1.3	13
305	Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. Clinical Nutrition Open Science, 2021, 36, 56-77.	0.5	13
306	Effect of unilateral resistance training on arterial compliance in elderly men. Applied Physiology, Nutrition and Metabolism, 2007, 32, 670-676.	0.9	12

#	Article	IF	CITATIONS
307	Self–Myofascial Release: No Improvement of Functional Outcomes in "Tight―Hamstrings. International Journal of Sports Physiology and Performance, 2016, 11, 658-663.	1.1	12
308	Motor unit recruitment cannot be inferred from surface EMG amplitude and basic reporting standards must be adhered to. European Journal of Applied Physiology, 2016, 116, 657-658.	1.2	12
309	Comments on Point:Counterpoint: Estrogen and sex do/do not influence post-exercise indexes of muscle damage, inflammation, and repair. Journal of Applied Physiology, 2009, 106, 1016-1020.	1.2	11
310	Effect of Protein, Dairy Components and Energy Balance in Optimizing Body Composition. Nestle Nutrition Institute Workshop Series, 2011, 69, 97-114.	1.5	11
311	Developing a new treatment paradigm for disease prevention and healthy aging. Translational Behavioral Medicine, 2014, 4, 117-123.	1.2	11
312	Variation in Protein Origin and Utilization: Research and Clinical Application. Nutrition in Clinical Practice, 2017, 32, 48S-57S.	1.1	11
313	Research in nutritional supplements and nutraceuticals for health, physical activity, and performance: moving forward. Applied Physiology, Nutrition and Metabolism, 2019, 44, 455-460.	0.9	11
314	Branched-Chain Amino Acids (Leucine, Isoleucine, and Valine) and Skeletal Muscle. , 2019, , 283-298.		11
315	An umbrella review of systematic reviews of βâ€hydroxyâ€Î²â€methyl butyrate supplementation in ageing and clinical practice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2265-2275.	2.9	11
316	Decreased glucose turnover after short-term training is unaccompanied by changes in muscle oxidative potential. American Journal of Physiology - Endocrinology and Metabolism, 1995, 269, E222-E230.	1.8	10
317	Fast whey protein and the leucine trigger. Nutrafoods, 2010, 9, 7-11.	0.5	10
318	Body Fat Content Determination in Premenopausal, Overweight, and Obese Young Women Using DXA and FTâ€NIR. Obesity, 2011, 19, 1497-1502.	1.5	10
319	Cardiovascular aging and the microcirculation of skeletal muscle: using contrast-enhanced ultrasound. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1194-H1199.	1.5	10
320	Aminoacidemia following ingestion of native whey protein, micellar casein, and a whey-casein blend in young men. Applied Physiology, Nutrition and Metabolism, 2019, 44, 103-106.	0.9	10
321	Leucine Supplementation Has No Further Effect on Training-induced Muscle Adaptations. Medicine and Science in Sports and Exercise, 2020, 52, 1809-1814.	0.2	10
322	Presleep α-LactalbuminÂConsumption Does Not Improve Sleep Quality or Time-Trial Performance in Cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 2020, 30, 197-202.	1.0	10
323	Resistance exercise order does not determine postexercise delivery of testosterone, growth hormone, and IGF-1 to skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2013, 38, 220-226.	0.9	9
324	Maintenance of skeletal muscle function following reduced daily physical activity in healthy older adults: a pilot trial. Applied Physiology, Nutrition and Metabolism, 2019, 44, 1052-1056.	0.9	9

#	Article	IF	CITATIONS
325	No effect of HMB or αâ€HICA supplementation on trainingâ€induced changes in body composition. European Journal of Sport Science, 2019, 19, 802-810.	1.4	9
326	Resistance training variable manipulations are less relevant than intrinsic biology in affecting muscle fiber hypertrophy. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 821-832.	1.3	9
327	A human-based multi-gene signature enables quantitative drug repurposing for metabolic disease. ELife, 2022, 11, .	2.8	9
328	Effects of High-Volume Versus High-Load Resistance Training on Skeletal Muscle Growth and Molecular Adaptations. Frontiers in Physiology, 2022, 13, 857555.	1.3	9
329	Last Word on Viewpoint: What is the relationship between the acute muscle protein synthetic response and changes in muscle mass?. Journal of Applied Physiology, 2015, 118, 503-503.	1.2	8
330	Nutrition in the elderly: a recommendation for more (evenly distributed) protein?. American Journal of Clinical Nutrition, 2017, 106, 12-13.	2.2	8
331	Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during shortâ€ŧerm disuse in healthy younger humans. FASEB Journal, 2021, 35, e21830.	0.2	8
332	Sex-Based Differences in the Myogenic Response and Inflammatory Gene Expression Following Eccentric Contractions in Humans. Frontiers in Physiology, 2022, 13, 880625.	1.3	8
333	Nutritional needs of elite endurance athletes. Part II: Dietary protein and the potential role of caffeine and creatine. European Journal of Sport Science, 2005, 5, 59-72.	1.4	7
334	A comparison of whey to caseinate. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E610-E610.	1.8	7
335	Associations between measures of vascular structure and function and systemic circulating blood markers in humans. Physiological Reports, 2016, 4, e12982.	0.7	7
336	Out-running â€~bad' diets: beyond weight loss there is clear evidence of the benefits of physical activity. British Journal of Sports Medicine, 2019, 53, 854-855.	3.1	7
337	The impact of different diagnostic criteria on the association of sarcopenia with injurious falls in the CLSA. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1603-1613.	2.9	7
338	Nutrient-dense protein as a primary dietary strategy in healthy ageing: please sir, may we have more?. Proceedings of the Nutrition Society, 2021, 80, 264-277.	0.4	7
339	Both Traditional and Stair Climbing–based HIIT Cardiac Rehabilitation Induce Beneficial Muscle Adaptations. Medicine and Science in Sports and Exercise, 2021, 53, 1114-1124.	0.2	7
340	Reduced muscle lactate during prolonged exercise following induced plasma volume expansion. Canadian Journal of Physiology and Pharmacology, 1997, 75, 1280-1286.	0.7	6
341	Letter to the Editor on the Journal Club article by Barker and Traber. Journal of Physiology, 2008, 586, 307-308.	1.3	6
342	Higher Protein during an Energy Deficit. Medicine and Science in Sports and Exercise, 2008, 40, 503-504.	0.2	6

#	Article	lF	CITATIONS
343	Considerations for Protein Supplementation in Warfighters. Journal of Nutrition, 2013, 143, 1838S-1842S.	1.3	6
344	Green tea extract does not affect exogenous glucose appearance but reduces insulinemia with glucose ingestion in exercise recovery. Journal of Applied Physiology, 2016, 121, 1282-1289.	1.2	6
345	Leucine metabolites do not attenuate training-induced inflammation in young resistance trained men. Journal of Sports Sciences, 2019, 37, 2037-2044.	1.0	6
346	Novel Essential Amino Acid Supplements Following Resistance Exercise Induce Aminoacidemia and Enhance Anabolic Signaling Irrespective of Age: A Proof-of-Concept Trial. Nutrients, 2020, 12, 2067.	1.7	6
347	Of Sound Mind and Body: Exploring the Diet-Strength Interaction in Healthy Aging. Frontiers in Nutrition, 2020, 7, 145.	1.6	6
348	Carotid Artery Longitudinal Wall Motion Is Unaffected by 12 Weeks of Endurance, Sprint Interval or Resistance Exercise Training. Ultrasound in Medicine and Biology, 2020, 46, 992-1000.	0.7	6
349	Whey Protein Supplementation Is Superior to Leucine-Matched Collagen Peptides to Increase Muscle Thickness During a 10-Week Resistance Training Program in Untrained Young Adults. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 133-143.	1.0	6
350	Community-based group physical activity and/or nutrition interventions to promote mobility in older adults: an umbrella review. BMC Geriatrics, 2022, 22, .	1.1	6
351	Rebuttal from Stuart M. Phillips and Chris McGlory. Journal of Physiology, 2014, 592, 5349-5349.	1.3	5
352	Determining the protein needs of "older―persons one meal at a time. American Journal of Clinical Nutrition, 2017, 105, 291-292.	2.2	5
353	Consumption of High-Leucine-Containing Protein Bar Following Breakfast Impacts Aminoacidemia and Subjective Appetite in Older Persons. Current Developments in Nutrition, 2021, 5, nzab080.	0.1	5
354	Dairy and Dairy Alternative Supplementation Increase Integrated Myofibrillar Protein Synthesis Rates, and Are Further Increased when Combined with Walking in Healthy Older Women. Journal of Nutrition, 2022, 152, 68-77.	1.3	5
355	The influence of mechanical loading on skeletal muscle protein turnover. Cellular and Molecular Exercise Physiology, 2015, 4, .	0.7	5
356	Protein for the Pre-Surgical Cancer Patient: a Narrative Review. Current Anesthesiology Reports, 2022, 12, 138-147.	0.9	5
357	Effect of acute plasma volume expansion on substrate turnover during prolonged low-intensity exercise. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E297-E304.	1.8	4
358	Supplemental protein and energy likely account for multi-ingredient supplementation in mitigating morbidity and mortality in compromised elderly malnourished patients. Clinical Nutrition, 2016, 35, 976.	2.3	4
359	Does protein supplementation really augment hypertrophy in older persons with resistance exercise training?. American Journal of Clinical Nutrition, 2018, 107, 1054-1056.	2.2	4
360	The effect of oral essential amino acids on incretin hormone production in youth and ageing. Endocrinology, Diabetes and Metabolism, 2019, 2, e00085.	1.0	4

#	Article	IF	CITATIONS
361	Training for strength and hypertrophy: an evidence-based approach. Current Opinion in Physiology, 2019, 11, 149-150.	0.9	4
362	Unaltered left ventricular mechanics and remodelling after 12 weeks of resistance exercise training – a longitudinal study in men. Applied Physiology, Nutrition and Metabolism, 2019, 44, 820-826.	0.9	4
363	Do Different Ascertainment Techniques Identify the Same Individuals as Sarcopenic in the Canadian Longitudinal Study on Aging?. Journal of the American Geriatrics Society, 2021, 69, 164-172.	1.3	4
364	Exercise in the maintenance of weight loss: health benefits beyond lost weight on the scale. British Journal of Sports Medicine, 2021, , bjsports-2021-104754.	3.1	4
365	Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disability and Rehabilitation, 2023, 45, 1433-1443.	0.9	4
366	Role of Resistance Training in Mitigating Risk for Mobility Disability in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. Archives of Physical Medicine and Rehabilitation, 2022, 103, 2023-2035.	0.5	4
367	Group-based nutrition interventions to promote healthy eating and mobility in community-dwelling older adults: a systematic review. Public Health Nutrition, 2022, 25, 2920-2951.	1.1	4
368	Cardiovascular responses to highâ€intensity stair climbing in individuals with coronary artery disease. Physiological Reports, 2022, 10, e15308.	0.7	4
369	First Direct Body Fat Content Measurement during Pregnancy Using Fourier Transform Near-Infrared Spectroscopy, 2014, 68, 379-382.	1.2	3
370	Effects of Short-Term Exercise Training With and Without Milk Intake on Cardiometabolic and Inflammatory Adaptations in Obese Adolescents. Pediatric Exercise Science, 2015, 27, 518-524.	0.5	3
371	Infographic. The effect of protein supplementation on resistance training-induced gains in muscle mass and strength. British Journal of Sports Medicine, 2019, 53, 1552-1552.	3.1	3
372	The Effect of a Multi-ingredient Supplement on Resistance Training–induced Adaptations. Medicine and Science in Sports and Exercise, 2021, 53, 1699-1707.	0.2	3
373	A to Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance—Part 32. British Journal of Sports Medicine, 2012, 46, 454-456.	3.1	2
374	Higher Dietary Protein During Weight Loss: Muscle Sparing?. Obesity, 2018, 26, 789-789.	1.5	2
375	An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance trainingâ€induced muscle fiber hypertrophy in younger men. FASEB Journal, 2021, 35, e21587.	0.2	2
376	Two weeks of single-leg immobilization alters intramyocellular lipid storage characteristics in healthy, young women. Journal of Applied Physiology, 2021, 130, 1247-1258.	1.2	2
377	Assessment of Protein Status in Athletes. , 2002, , 283-316.		2
378	Short-term high- vs low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Scandinavian Journal of Medicine and Science in Sports, 2005, 15, 135-136.	1.3	1

#	Article	IF	CITATIONS
379	Resistance exercise and strong healthy children: safe when done right!. Applied Physiology, Nutrition and Metabolism, 2008, 33, 545-546.	0.9	1
380	Newton's force as countermeasure for disuse atrophy. Journal of Applied Physiology, 2009, 107, 6-7.	1.2	1
381	Outâ€FOX(O)ing proteolysis in sepsis. Journal of Physiology, 2010, 588, 1193-1193.	1.3	1
382	COMMENT AND REPLY ON: INTERACTIONS OF CORTISOL, TESTOSTERONE, AND RESISTANCE TRAINING: INFLUENCE OF CIRCADIAN RHYTHMS. Chronobiol Int. 2010; 27(4): 675–705. DOI: 10.3109/07420521003778 Chronobiology International, 2010, 27, 1943-1945.	577039	1
383	Amino Acids and Exercise. , 2016, , 67-78.		1
384	Assessing the mechanistic target of rapamycin complex-1 pathway in response to resistance exercise and feeding in human skeletal muscle by multiplex assay. Applied Physiology, Nutrition and Metabolism, 2018, 43, 945-949.	0.9	1
385	Physiological Limitations to Endurance Exercise. , 1996, , 211-217.		1
386	ls High-intensity Stair Climbing An Effective Alternative To Traditional Cardiac Rehabilitation Exercise?. Medicine and Science in Sports and Exercise, 2020, 52, 440-440.	0.2	1
387	Exploring comparative assessment of adiposity measures during pregnancy and postpartum. Clinical Nutrition ESPEN, 2022, 49, 365-371.	0.5	1
388	Current and Emerging Role of Whey Protein on Muscle Accretion. , 0, , 345-367.		0
389	Sirolimus and mTORC1: centre stage in the story of what makes muscles bigger?. Journal of Physiology, 2009, 587, 1371-1371.	1.3	0
390	Patterns Of Protein Ingestion And Muscle Protein Synthesis After Resistance Exercise In Trained Men. Medicine and Science in Sports and Exercise, 2010, 42, 63.	0.2	0
391	Effects Of Leucine-Enriched Protein Supplementation On Subsequent Performance And Metabolism Following High-Intensity Cycling. Medicine and Science in Sports and Exercise, 2011, 43, 136.	0.2	0
392	Effect Of Muscle Glycogen Status And Nutrition On Cell Signaling Following Resistance Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 583.	0.2	0
393	Retrospective Analysis Of Resistance Training-induced Strength And Hypertrophy: Separating The Wheat From The Hormone Chaff. Medicine and Science in Sports and Exercise, 2011, 43, 41.	0.2	Ο
394	Muscle Damage Over A Resistance-training Period. Medicine and Science in Sports and Exercise, 2016, 48, 900.	0.2	0
395	Muscling out from under the yolk of the egg's "bad―reputation. American Journal of Clinical Nutrition, 2017, 106, 1333-1334.	2.2	0
396	Absence of Functional Left Ventricular Adaption With Short-Term Resistance Exercise Training in Young Men. Medicine and Science in Sports and Exercise, 2018, 50, 848.	0.2	0

#	Article	IF	CITATIONS
397	Resistance Training-Induced Muscle Hypertrophy is Related to Androgen Receptor Content not Intramuscular or Systemic Hormones. Medicine and Science in Sports and Exercise, 2018, 50, 810.	0.2	0
398	Low-load Resistance Exercise During Inactivity is Associated With Greater Fibre Area and Satellite Cell Expression in Older Skeletal Muscle. Medicine and Science in Sports and Exercise, 2019, 51, 614-615.	0.2	0
399	Does Exclusive Consumption of Plant-based Dietary Protein Impair Resistance Training-induced Muscle Adaptations?. Medicine and Science in Sports and Exercise, 2019, 51, 790-790.	0.2	0
400	Maintaining It after Losing It: Advantage Protein!. Journal of Nutrition, 2020, 150, 425-426.	1.3	0
401	Methodological Issues and the Impact of Age Stratification on the Proportion of Participants with Low Appendicular Lean Mass When Adjusting for Height and Fat Mass Using Linear Regression: Results from the Canadian Longitudinal Study on Aging. Journal of Nutrition, Health and Aging, 0, , .	1.5	0
402	Acute And Chronic Effects Of Branched-chain Amino Acid Supplementation: A Systematic Review And Meta-analysis. Medicine and Science in Sports and Exercise, 2020, 52, 457-457.	0.2	0
403	Infographic. UEFA expert group 2020 statement on nutrition in elite football. British Journal of Sports Medicine, 2021, 55, 453-455.	3.1	0
404	Unravelling protein turnover in Duchenne muscular dystrophy: one protein at a time. Journal of Physiology, 2021, 599, 5135-5136.	1.3	0
405	Muscle Collagen Synthesis in Human Quadriceps in Response to Maximal Shortening and Lengthening Contractions. Medicine and Science in Sports and Exercise, 2004, 36, s339.	0.2	0
406	Activation of signaling pathways regulating translation initiation in human skeletal muscle with feeding and resistance exercise. FASEB Journal, 2007, 21, A1207.	0.2	0
407	Bolus Lâ€arginine supplementation in the fed state at rest and following resistance exercise does not effect bulk muscle blood flow. FASEB Journal, 2007, 21, A1231.	0.2	0
408	Adding protein to a carbohydrate drink increases skeletal muscle protein synthesis during recovery from prolonged aerobic exercise. FASEB Journal, 2007, 21, A692.	0.2	0
409	Resistance and endurance training differentially affect myofibrillar and mitochondrial protein synthesis at rest and following exercise in human skeletal muscle. FASEB Journal, 2008, 22, 753.17.	0.2	0
410	Milk consumption after resistance exercise increases fat loss and increases muscle mass and strength gains in young women. FASEB Journal, 2009, 23, 213.1.	0.2	0
411	Doseâ€response of leucine oxidation with beef feeding in middleâ€aged men. FASEB Journal, 2011, 25, .	0.2	0
412	Nutrition for Strength Power Athletes. , 2015, , 65-86.		0
413	Myofibrillar Protein Synthesis Following Ingestion of Soy Protein Isolate at Rest and After Resistance Exercise in Elderly Men. , 2016, , 105-126.		Ο
414	Role of Testosterone on Muscle Protein Syntheis during Prostate Cancer Treatment. Medicine and Science in Sports and Exercise, 2016, 48, 358-359.	0.2	0

#	Article	IF	CITATIONS
415	15: Dietary Protein and Physical Training Effects on Body Composition and Performance. , 2017, , 323-342.		Ο
416	No Impact of HMB Supplementation on Muscle or Strength Gains During an Undulating Periodized Resistance Training Program in Trained, Young Men. Medicine and Science in Sports and Exercise, 2018, 50, 587.	0.2	0
417	Molecular Transducers of Human Skeletal Muscle Remodeling Under Different Loading States. SSRN Electronic Journal, 0, , .	0.4	0
418	916-P: Precision Evaluation of Clinical Laboratory Glucose Reference Systems. Diabetes, 2020, 69, .	0.3	0
419	The effects of phosphatidic acid on performance and body composition - a scoping review. Journal of Sports Sciences, 2021, , 1-6.	1.0	0
420	Dietary Influence on Muscle Protein Synthesis and Hypertrophy. , 2020, , 304-320.		0
421	Methodological issues and the impact of age stratification on the proportion of participants with low appendicular lean mass when adjusting for height and fat mass USING LINEAR REGRESSION: RESULTS FROM THE CANADIAN LONGITUDINAL STUDY ON AGING. Journal of Frailty & amp; Aging, the, 2021, 10. 1-6.	0.8	0
422	Targeted SNP Interrogation to Determine if Select Polymorphisms are Associated with Skeletal Muscle Hypertrophy Following 12 Weeks of Resistance Training. FASEB Journal, 2020, 34, 1-1.	0.2	0
423	Skeletal Muscle Adaptation In Cardiac Rehabilitation Patients Undertaking Traditional Or Higher Intensity Stair-climbing Exercise. Medicine and Science in Sports and Exercise, 2020, 52, 715-715.	0.2	0
424	PRESENT 2020: Texto que desarrolla la lista de verificación para el adecuado informe de la evidencia en ensayos clÃnicos de deporte y nutrición del ejercicio (Traducción Inglés-Español). Revista Andaluza De Medicina Del Deporte, 2020, 13, 244-254.	0.1	0
425	Short-term training: when do repeated bouts become training? Introduction to the symposium. Applied Physiology, Nutrition, and Metabolism, 2000, 25, 182-4.	1.7	0
426	Optimizing body composition during weight loss: the role of milk products. The Canadian Nurse, 2012, 108, 5.	0.0	0
427	Celebrating the Professional Life of Professor Kevin D. Tipton (1961–2022). International Journal of Sport Nutrition and Exercise Metabolism, 2022, , 1-4.	1.0	0
428	The effects of low-frequncy high-volume electrical stimulation on satellite cell activation and anabolic signaling pathway in single muscle fibers of old mice. Korean Journal of Sport Science, 2020, 31, 638-649.	0.0	0