Philipp Seib

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3331817/philipp-seib-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,028 23 45 g-index

52 2,453 7.4 sext. papers ext. citations avg, IF 5.46

L-index

#	Paper	IF	Citations
47	Investigation of chip formation mechanism in ultra-precision diamond turning of silk fibroin film. Journal of Manufacturing Processes, 2022, 74, 14-27	5	O
46	Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly <i>RSC Advances</i> , 2022 , 12, 7357-7373	3.7	0
45	Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro response <i>Scientific Reports</i> , 2022 , 12, 3729	4.9	O
44	Emerging Silk Material Trends: Repurposing, Phase Separation and Solution-Based Designs. <i>Materials</i> , 2021 , 14,	3.5	3
43	Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. <i>ACS Applied Materials & Applied & Appl</i>	9.5	4
42	The innate immune response of self-assembling silk fibroin hydrogels. <i>Biomaterials Science</i> , 2021 , 9, 7	19 <i>4</i> -720)42
41	Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. <i>Carbohydrate Polymers</i> , 2020 , 245, 116504	10.3	9
40	Silk Nanoparticle Manufacture in Semi-Batch Format. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 6748-6759	5.5	4
39	Manual Versus Microfluidic-Assisted Nanoparticle Manufacture: Impact of Silk Fibroin Stock on Nanoparticle Characteristics. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 2796-2804	5.5	11
38	Microfluidic-assisted silk nanoparticle tuning. Nanoscale Advances, 2019, 1, 873-883	5.1	14
37	PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 14515-14525	9.5	20
36	Unraveling the Impact of High-Order Silk Structures on Molecular Drug Binding and Release Behaviors. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4278-4284	6.4	4
35	The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 2019, 8, e1800465	10.1	299
34	In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 859-869	5.5	21
33	Degradation Behavior of Silk Nanoparticles-Enzyme Responsiveness. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 942-951	5.5	44
32	Reverse-engineered silk hydrogels for cell and drug delivery. <i>Therapeutic Delivery</i> , 2018 , 9, 469-487	3.8	21
31	Impact of the hypoxic phenotype on the uptake and efflux of nanoparticles by human breast cancer cells. <i>Scientific Reports</i> , 2018 , 8, 12318	4.9	14

30	Self-assembling hydrogels from reverse-engineered silk 2018 , 27-47		3
29	Silk Hydrogels for Drug and Cell Delivery 2018 , 208-227		3
28	A Review of the Emerging Role of Silk for the Treatment of the Eye. <i>Pharmaceutical Research</i> , 2018 , 35, 248	4.5	23
27	In vitro studies on space-conforming self-assembling silk hydrogels as a mesenchymal stem cell-support matrix suitable for minimally invasive brain application. <i>Scientific Reports</i> , 2018 , 8, 13655	4.9	19
26	Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601240	10.1	30
25	Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 2633-2642	6	44
24	Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. <i>Journal of Drug Targeting</i> , 2017 , 25, 865-872	5.4	34
23	Silk nanoparticles an emerging anticancer nanomedicine. AIMS Bioengineering, 2017, 4, 239-258	3.4	32
22	Heparin-Modified Polyethylene Glycol Microparticle Aggregates for Focal Cancer Chemotherapy. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 2287-2293	5.5	20
21	Manufacture and Drug Delivery Applications of Silk Nanoparticles. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	17
20	Tissue engineering a surrogate niche for metastatic cancer cells. <i>Biomaterials</i> , 2015 , 51, 313-319	15.6	48
19	PEGylated Silk Nanoparticles for Anticancer Drug Delivery. <i>Biomacromolecules</i> , 2015 , 16, 3712-22	6.9	69
18	Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. <i>Acta Biomaterialia</i> , 2015 , 20, 32-38	10.8	46
17	Multifunctional silk-heparin biomaterials for vascular tissue engineering applications. <i>Biomaterials</i> , 2014 , 35, 83-91	15.6	79
16	A material-based platform to modulate fibronectin activity and focal adhesion assembly. <i>BioResearch Open Access</i> , 2014 , 3, 286-96	2.4	30
15	Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. <i>British Journal of Cancer</i> , 2014 , 111, 708-15	8.7	51
14	pH-dependent anticancer drug release from silk nanoparticles. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1606-11	10.1	156
13	Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. <i>Nature Methods</i> , 2013 , 10, 788-94	21.6	162

12	Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. <i>Advanced Functional Materials</i> , 2013 , 23, 58-65	15.6	116
11	Silk Hydrogels: Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer (Adv. Funct. Mater. 1/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 57-57	15.6	
10	Silk for Drug Delivery Applications: Opportunities and Challenges. <i>Israel Journal of Chemistry</i> , 2013 , 53, n/a-n/a	3.4	11
9	Impact of processing parameters on the haemocompatibility of Bombyx mori silk films. <i>Biomaterials</i> , 2012 , 33, 1017-23	15.6	60
8	Polymeric biomaterials for stem cell bioengineering. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1420-31	4.8	37
7	Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. <i>Biomaterials</i> , 2012 , 33, 8442-50	15.6	86
6	In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors. <i>PLoS ONE</i> , 2012 , 7, e40372	3.7	21
5	Stem Cell Implants for Cancer Therapy: TRAIL-Expressing Mesenchymal Stem Cells Target Cancer Cells In Situ. <i>Journal of Breast Cancer</i> , 2012 , 15, 273-82	3	43
4	Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). <i>Biochemical and Biophysical Research Communications</i> , 2009 , 389, 663-7	3.4	69
3	Engineered extracellular matrices modulate the expression profile and feeder properties of bone marrow-derived human multipotent mesenchymal stromal cells. <i>Tissue Engineering - Part A</i> , 2009 , 15, 3161-71	3.9	24
2	Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. <i>Journal of Controlled Release</i> , 2007 , 117, 291-300	11.7	166
1	Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer - doxorubicin. <i>Journal of Drug Targeting</i> , 2006 , 14, 375-90	5.4	40