
Philipp Seib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3331817/publications.pdf Version: 2024-02-01

DHILIDD SEIR

#	Article	IF	CITATIONS
1	The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 2019, 8, e1800465.	3.9	522
2	Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods, 2013, 10, 788-794.	9.0	195
3	pHâ€Dependent Anticancer Drug Release from Silk Nanoparticles. Advanced Healthcare Materials, 2013, 2, 1606-1611.	3.9	192
4	Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. Journal of Controlled Release, 2007, 117, 291-300.	4.8	179
5	Selfâ€Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer. Advanced Functional Materials, 2013, 23, 58-65.	7.8	132
6	Doxorubicin-loaded silk films: Drug-silk interactions and inÂvivo performance in human orthotopic breast cancer. Biomaterials, 2012, 33, 8442-8450.	5.7	100
7	Multifunctional silk–heparin biomaterials for vascular tissue engineering applications. Biomaterials, 2014, 35, 83-91.	5.7	98
8	PEGylated Silk Nanoparticles for Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 3712-3722.	2.6	98
9	Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochemical and Biophysical Research Communications, 2009, 389, 663-667.	1.0	78
10	Impact of processing parameters on the haemocompatibility of Bombyx mori silk films. Biomaterials, 2012, 33, 1017-1023.	5.7	74
11	Degradation Behavior of Silk Nanoparticles—Enzyme Responsiveness. ACS Biomaterials Science and Engineering, 2018, 4, 942-951.	2.6	74
12	Tissue engineering a surrogate niche for metastatic cancer cells. Biomaterials, 2015, 51, 313-319.	5.7	61
13	Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. British Journal of Cancer, 2014, 111, 708-715.	2.9	60
14	Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2633-2642.	1.7	60
15	Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lacticâ€ <i>co</i> â€glycolic acid), and Silica Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1601240.	3.9	51
16	Stem Cell Implants for Cancer Therapy: TRAIL-Expressing Mesenchymal Stem Cells Target Cancer Cells <i>In Situ</i> . Journal of Breast Cancer, 2012, 15, 273.	0.8	50
17	Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomaterialia, 2015, 20, 32-38.	4.1	50
18	Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. Journal of Drug Targeting, 2017, 25, 865-872.	2.1	48

PHILIPP SEIB

#	Article	IF	CITATIONS
19	In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model. ACS Biomaterials Science and Engineering, 2019, 5, 859-869.	2.6	45
20	Polymeric Biomaterials for Stem Cell Bioengineering. Macromolecular Rapid Communications, 2012, 33, 1420-1431.	2.0	44
21	Silk nanoparticles—an emerging anticancer nanomedicine. AIMS Bioengineering, 2017, 4, 239-258.	0.6	44
22	Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer–doxorubicin. Journal of Drug Targeting, 2006, 14, 375-390.	2.1	42
23	PEGylation-Dependent Metabolic Rewiring of Macrophages with Silk Fibroin Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 14515-14525.	4.0	38
24	Reverse-engineered silk hydrogels for cell and drug delivery. Therapeutic Delivery, 2018, 9, 469-487.	1.2	36
25	A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 2014, 3, 286-296.	2.6	35
26	A Review of the Emerging Role of Silk for the Treatment of the Eye. Pharmaceutical Research, 2018, 35, 248.	1.7	35
27	In vitro studies on space-conforming self-assembling silk hydrogels as a mesenchymal stem cell-support matrix suitable for minimally invasive brain application. Scientific Reports, 2018, 8, 13655.	1.6	31
28	Manufacture and Drug Delivery Applications of Silk Nanoparticles. Journal of Visualized Experiments, 2016, , .	0.2	29
29	Silk for Drug Delivery Applications: Opportunities and Challenges. Israel Journal of Chemistry, 2013, 53, 756-766.	1.0	28
30	Manual Versus Microfluidic-Assisted Nanoparticle Manufacture: Impact of Silk Fibroin Stock on Nanoparticle Characteristics. ACS Biomaterials Science and Engineering, 2020, 6, 2796-2804.	2.6	28
31	Engineered Extracellular Matrices Modulate the Expression Profile and Feeder Properties of Bone Marrow-Derived Human Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2009, 15, 3161-3171.	1.6	26
32	Heparin-Modified Polyethylene Glycol Microparticle Aggregates for Focal Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2016, 2, 2287-2293.	2.6	26
33	In Vitro Model of Metastasis to Bone Marrow Mediates Prostate Cancer Castration Resistant Growth through Paracrine and Extracellular Matrix Factors. PLoS ONE, 2012, 7, e40372.	1.1	25
34	Microfluidic-assisted silk nanoparticle tuning. Nanoscale Advances, 2019, 1, 873-883.	2.2	23
35	Impact of the hypoxic phenotype on the uptake and efflux of nanoparticles by human breast cancer cells. Scientific Reports, 2018, 8, 12318.	1.6	18
36	Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. ACS Applied Materials & Interfaces, 2021, 13, 30420-30433.	4.0	18

PHILIPP SEIB

#	Article	IF	CITATIONS
37	Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomaterials Science and Engineering, 2020, 6, 6748-6759.	2.6	17
38	Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. Carbohydrate Polymers, 2020, 245, 116504.	5.1	16
39	Unraveling the Impact of High-Order Silk Structures on Molecular Drug Binding and Release Behaviors. Journal of Physical Chemistry Letters, 2019, 10, 4278-4284.	2.1	14
40	The innate immune response of self-assembling silk fibroin hydrogels. Biomaterials Science, 2021, 9, 7194-7204.	2.6	12
41	Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro response. Scientific Reports, 2022, 12, 3729.	1.6	12
42	Towards clinical translation of †̃second-generation' regenerative stroke therapies: hydrogels as game changers?. Trends in Biotechnology, 2022, 40, 708-720.	4.9	11
43	Volumetric Scalability of Microfluidic and Semi-Batch Silk Nanoprecipitation Methods. Molecules, 2022, 27, 2368.	1.7	9
44	Emerging Silk Material Trends: Repurposing, Phase Separation and Solution-Based Designs. Materials, 2021, 14, 1160.	1.3	8
45	Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly. RSC Advances, 2022, 12, 7357-7373.	1.7	6
46	Investigation of chip formation mechanism in ultra-precision diamond turning of silk fibroin film. Journal of Manufacturing Processes, 2022, 74, 14-27.	2.8	4
47	Self-assembling hydrogels from reverse-engineered silk. , 2018, , 27-47.		3
48	Silk Hydrogels for Drug and Cell Delivery. , 2018, , 208-227.		3
49	Smart Silk Origami as Eco-sensors for Environmental Pollution. ACS Applied Bio Materials, 2022, 5, 3658-3666.	2.3	3
50	Silk Hydrogels: Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer (Adv. Funct. Mater. 1/2013). Advanced Functional Materials, 2013, 23, 57-57.	7.8	0