Roland A Knapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3331361/publications.pdf Version: 2024-02-01

ROLAND A KNADD

#	Article	IF	CITATIONS
1	Effectiveness of antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog. PeerJ, 2022, 10, e12712.	0.9	10
2	Using visual encounter data to improve capture–recapture abundance estimates. Ecosphere, 2021, 12, e03370.	1.0	0
3	The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME Journal, 2021, 15, 1628-1640.	4.4	38
4	Alien fish eradication from high mountain lakes by multiple removal methods: Estimating residual abundance and eradication probability in open populations. Journal of Applied Ecology, 2021, 58, 1055-1068.	1.9	7
5	Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210782.	1.2	10
6	Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California. ISME Communications, 2021, 1, .	1.7	5
7	Stepping into the past to conserve the future: Archived skin swabs from extant and extirpated populations inform genetic management of an endangered amphibian. Molecular Ecology, 2020, 29, 2598-2611.	2.0	3
8	Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20382-20387.	3.3	86
9	Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Molecular Ecology, 2019, 28, 127-140.	2.0	41
10	Disease and climate effects on individuals drive postâ€reintroduction population dynamics of an endangered amphibian. Ecosphere, 2018, 9, e02499.	1.0	34
11	Population genetic structure of the endangered Sierra Nevada yellow-legged frog (Rana sierrae) in Yosemite National Park based on multi-locus nuclear data from swab samples. Conservation Genetics, 2017, 18, 731-744.	0.8	10
12	Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170944.	1.2	71
13	Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a loadâ€dependent amphibian disease. Ecology Letters, 2017, 20, 1169-1181.	3.0	47
14	Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11889-11894.	3.3	129
15	Declines and extinctions of mountain yellowâ€legged frogs have small effects on benthic macroinvertebrate communities. Ecosphere, 2016, 7, e01327.	1.0	4
16	Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1691-1701.	0.7	12
17	Marginal Bayesian Nonparametric Model for Time to Disease Arrival of Threatened Amphibian Populations. Biometrics, 2015, 71, 1101-1110.	0.8	12
18	Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test. Scientific Reports, 2015, 5, 10702.	1.6	4

#	Article	IF	CITATIONS
19	Increased accuracy of species lists developed for alpine lakes using morphology and cytochrome oxidase I for identification of specimens. Molecular Ecology Resources, 2013, 13, 820-831.	2.2	17
20	Use of Historically Fishless High-Mountain Lakes and Streams By Nearctic River Otters (Lontra) Tj ETQq0 0 0 rgB1	- /Qverlock	≀ 10 Tf 50 70
21	Evolutionary history of alpine and subalpine <i><scp>D</scp>aphnia</i> in western <scp>N</scp> orth <scp>A</scp> merica. Freshwater Biology, 2013, 58, 1512-1522.	1.2	13
22	Temporal and spatial variation of atmospherically deposited organic contaminants at high elevation in yosemite national park, California, USA. Environmental Toxicology and Chemistry, 2013, 32, 517-525.	2.2	17
23	A Network Extension of Species Occupancy Models in a Patchy Environment Applied to the Yosemite Toad (Anaxyrus canorus). PLoS ONE, 2013, 8, e72200.	1.1	14
24	Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere, 2011, 2, art93.	1.0	53
25	Pesticide distributions and population declines of California, USA, alpine frogs, <i>Rana muscosa</i> and <i>Rana sierrae</i> . Environmental Toxicology and Chemistry, 2011, 30, 682-691.	2.2	37
26	Genetic resilience of Daphnia populations following experimental removal of introduced fish. Conservation Genetics, 2010, 11, 1737-1745.	0.8	14
27	Nonnative trout impact an alpineâ€nesting bird by altering aquaticâ€insect subsidies. Ecology, 2010, 91, 2406-2415.	1.5	139
28	Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the United States of America, 2010, 107, 9689-9694.	3.3	530
29	Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9695-9700.	3.3	426
30	ALLEE EFFECT LIMITS COLONIZATION SUCCESS OF SEXUALLY REPRODUCING ZOOPLANKTON. Ecology, 2008, 89, 2760-2769.	1.5	54
31	RECOVERY AFTER LOCAL EXTINCTION: FACTORS AFFECTING RE-ESTABLISHMENT OF ALPINE LAKE ZOOPLANKTON. , 2008, 18, 1850-1859.		47
32	Population genetics of the frog-killing fungus <i>Batrachochytrium dendrobatidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13845-13850.	3.3	156
33	MULTIPLE STRESSORS AND AMPHIBIAN DECLINES: DUAL IMPACTS OF PESTICIDES AND FISH ON YELLOW-LEGGED FROGS. , 2007, 17, 587-597.		105
34	Removal of nonnative fish results in population expansion of a declining amphibian (mountain) Tj ETQq0 0 0 rgB	[/Qyerlock	₹ 10 Tf 50 14

35	Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow-legged frog. Journal of Zoology, 2007, 271, 361-374.	0.8	103
36	Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity. BMC Evolutionary Biology, 2007, 7, 21.	3.2	50

ROLAND A KNAPP

#	Article	IF	CITATIONS
37	Rapid evolution in response to introduced predators I: rates and patterns of morphological and life-history trait divergence. BMC Evolutionary Biology, 2007, 7, 22.	3.2	68
38	Tadpole Mouthpart Depigmentation as an Accurate Indicator of Chytridiomycosis, an Emerging Disease of Amphibians. Copeia, 2006, 2006, 188-197.	1.4	57
39	EMERGING INFECTIOUS DISEASE AS A PROXIMATE CAUSE OF AMPHIBIAN MASS MORTALITY. Ecology, 2006, 87, 1671-1683.	1.5	256
40	FAUNA OF YOSEMITE NATIONAL PARK LAKES HAS LOW RESISTANCE BUT HIGH RESILIENCE TO FISH INTRODUCTIONS. , 2005, 15, 835-847.		75
41	Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnology and Oceanography, 2005, 50, 2032-2042.	1.6	42
42	Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks. Ecosystems, 2005, 8, 462-477.	1.6	23
43	Spatial and Temporal Variability in the Amount and Source of Dissolved Organic Carbon: Implications for Ultraviolet Exposure in Amphibian Habitats. Ecosystems, 2005, 8, 478-487.	1.6	13
44	Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 2005, 8, 488-500.	1.6	17
45	COMMUNICATING ECOLOGY THROUGH FOOD WEBS: VISUALIZING AND QUANTIFYING THE EFFECTS OF STOCKING ALPINE LAKES WITH TROUT. , 2005, , 407-423.		11
46	INVESTIGATING THE POPULATION-LEVEL EFFECTS OF CHYTRIDIOMYCOSIS: AN EMERGING INFECTIOUS DISEASE OF AMPHIBIANS. Ecology, 2005, 86, 3149-3159.	1.5	154
47	Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biological Conservation, 2005, 121, 265-279.	1.9	138
48	BODY SIZES OF CONSUMERS AND THEIR RESOURCES. Ecology, 2005, 86, 2545-2545.	1.5	105
49	Response by trout populations in alpine lakes to an experimental halt to stocking. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 2025-2037.	0.7	25
50	Zooplankton recovery after fish removal: Limitations of the egg bank. Limnology and Oceanography, 2004, 49, 1382-1392.	1.6	61
51	DEVELOPING PROBABILISTIC MODELS TO PREDICT AMPHIBIAN SITE OCCUPANCY IN A PATCHY LANDSCAPE. , 2003, 13, 1069-1082.		105
52	Garter Snake Distributions in High-Elevation Aquatic Ecosystems: Is There a Link with Declining Amphibian Populations and Nonnative Trout Introductions?. Journal of Herpetology, 2002, 36, 16-22.	0.2	57
53	RESISTANCE AND RESILIENCE OF ALPINE LAKE FAUNA TO FISH INTRODUCTIONS. Ecological Monographs, 2001, 71, 401-421.	2.4	280
54	The Introduction of Nonnative Fish into Wilderness Lakes: Good Intentions, Conflicting Mandates, and Unintended Consequences. Ecosystems, 2001, 4, 275-278.	1.6	72

ROLAND A KNAPP

#	Article	IF	CITATIONS
55	Alteration of Nutrient Cycles and Algal Production Resulting from Fish Introductions intoMountain Lakes. Ecosystems, 2001, 4, 308-321.	1.6	147
56	The use of egg shells to infer the historical presence of copepods in alpine lakes. Journal of Paleolimnology, 2001, 25, 539-543.	0.8	13
57	Effects of Nonnative Trout on Pacific Treefrogs (Hyla regilla) in the Sierra Nevada. Copeia, 2001, 2001, 1130-1137.	1.4	43
58	Nonâ€Native Fish Introductions and the Decline of the Mountain Yellowâ€Legged Frog from within Protected Areas. Conservation Biology, 2000, 14, 428-438.	2.4	287
59	Is it possible to predict habitat use by spawning salmonids? A test using California golden trout (<i>Oncorhynchus mykiss aguabonita</i>). Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1576-1584.	0.7	58
60	Eradication of Nonnative Fish by Gill Netting from a Small Mountain Lake in California. Restoration Ecology, 1998, 6, 207-213.	1.4	103
61	EFFECTS OF STREAM CHANNEL MORPHOLOGY ON GOLDEN TROUT SPAWNING HABITAT AND RECRUITMENT. , 1998, 8, 1104-1117.		55
62	Spawning by California Golden Trout: Characteristics of Spawning Fish, Seasonal and Daily Timing, Redd Characteristics, and Microhabitat Preferences. Transactions of the American Fisheries Society, 1996, 125, 519-531.	0.6	33
63	A Field Comparison of the Substrate Composition of California Golden Trout Redds Sampled with Two Devices. North American Journal of Fisheries Management, 1996, 16, 674-681.	0.5	2
64	Livestock Grazing, Golden Trout, and Streams in the Golden Trout Wilderness, California: Impacts and Management Implications. North American Journal of Fisheries Management, 1996, 16, 805-820.	0.5	59
65	The influence of egg survivorship on the subsequent nest fidelity of female bicolour damselfish, Stegastes partitus. Animal Behaviour, 1993, 46, 111-121.	0.8	37
66	Courtship as an honest indicator of male parental quality in the bicolor damselfish, Stegastes partitus. Behavioral Ecology, 1991, 2, 295-300.	1.0	175
67	Male parental care and female choice in the bicolor damselfish, Stegastes partitus: bigger is not always better. Animal Behaviour, 1991, 41, 747-756.	0.8	71
68	Egg-mimicry as a mating strategy in the fantail darter, Etheostoma flabellare: females prefer males with eggs. Behavioral Ecology and Sociobiology, 1989, 25, 321-326.	0.6	98
69	Toward a functional classification of stream invertebrate drift. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1988, 23, 1244-1254.	0.1	15