Xiaolin Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3330974/publications.pdf

Version: 2024-02-01

759233 839539 28 365 12 18 citations h-index g-index papers 28 28 28 297 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase. Enzyme and Microbial Technology, 2022, 153, 109915.	3.2	5
2	Controlled chemical assembly of enzymes in cell lysate enabled by genetic-encoded nonstandard amino acids. Materials Chemistry Frontiers, 2022, 6, 182-193.	5.9	4
3	Systematic Metabolic Engineering for the Production of Azaphilones in <i>Monascus purpureus</i> HJ11. Journal of Agricultural and Food Chemistry, 2022, 70, 1589-1600.	5.2	14
4	Controllably crosslinked dual enzymes enabled by genetic-encoded non-standard amino acid for efficiently enantioselective hydrogenation. International Journal of Biological Macromolecules, 2022, 205, 682-691.	7. 5	4
5	Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades. RSC Advances, 2022, 12, 17873-17881.	3.6	7
6	<i>Aspergillus oryzae</i> Biosynthetic Platform for <i>de Novo</i> Iridoid Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2501-2511.	5.2	12
7	Efficiently Enantioselective Hydrogenation Photosynthesis of (<i>R</i>)-1-[3,5-Bis(trifluoromethyl)phenyl] ethanol over a CLEs-TiO ₂ Bioinorganic Hybrid Materials. ACS Applied Materials & Description (Applied Materials) amp; Interfaces, 2021, 13, 41454-41463.	8.0	6
8	Cyanide-free synthesis of aromatic nitriles from aldoximes: Discovery and application of a novel heme-containing aldoxime dehydratase. Enzyme and Microbial Technology, 2021, 150, 109883.	3.2	10
9	Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal–organic framework for efficient biocatalysis. Nanoscale, 2020, 12, 967-972.	5.6	40
10	Dual-enzyme and NADPH co-embedded organic–inorganic hybrid nanoflowers prepared using biomimetic mineralization for the asymmetric synthesis of (⟨i⟩R⟨/i⟩)-(â⁻ʾ)-pantolactone. Reaction Chemistry and Engineering, 2020, 5, 1973-1980.	3.7	9
11	Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11. Microbial Cell Factories, 2020, 19, 224.	4.0	23
12	Highly efficient asymmetric reduction of ketopantolactone to <scp>d</scp> -(â^')-pantolactone by <i>Escherichia coli</i> cells expressing recombinant conjugated polyketone reductase and glucose dehydrogenase in a fed-batch biphasic reaction system. Reaction Chemistry and Engineering, 2020, 5, 531-538.	3.7	11
13	Stable immobilization of aldehyde ketone reductase mutants containing nonstandard amino acids on an epoxy resin <i>via</i> strain-promoted alkyne–azide cycloaddition. RSC Advances, 2020, 10, 2624-2633.	3.6	7
14	Rapidly and Precisely Cross-Linked Enzymes Using Bio-Orthogonal Chemistry from Cell Lysate for the Synthesis of $(\langle i \rangle S \langle i \rangle)$ -1- $(2,6$ -Dichloro-3-fluorophenyl) Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6466-6478.	6.7	16
15	Efficient Production of 2,6-Difluorobenzamide by Recombinant Escherichia coli Expressing the Aurantimonas manganoxydans Nitrile Hydratase. Applied Biochemistry and Biotechnology, 2019, 187, 439-448.	2.9	4
16	Efficient synthesis of the key chiral alcohol intermediate of Crizotinib using dualâ€enzyme@CaHPO ₄ hybrid nanoflowers assembled by mimetic biomineralization. Journal of Chemical Technology and Biotechnology, 2019, 94, 236-243.	3.2	35
17	Recombinant expression and molecular insights into the catalytic mechanism of an NADPH-dependent conjugated polyketone reductase for the asymmetric synthesis of (R)-pantolactone. Enzyme and Microbial Technology, 2019, 126, 77-85.	3.2	18
18	Discovery of a new NADPH-dependent aldo-keto reductase from Candida orthopsilosis catalyzing the stereospecific synthesis of (R)-pantolactone by genome mining. Journal of Biotechnology, 2019, 291, 26-34.	3.8	17

#	ARTICLE	IF	CITATION
19	Efficient synthesis of vitamin A palmitate in nonaqueous medium using self-assembled lipase TLL@apatite hybrid nanoflowers by mimetic biomineralization. Green Chemistry Letters and Reviews, 2018, 11, 476-483.	4.7	7
20	N-terminal engineering of overlapping genes in the nitrile hydratase gene cluster improved its activity. Enzyme and Microbial Technology, 2018, 117, 9-14.	3.2	9
21	Evidence for the participation of an extra \hat{l}_{\pm} -helix at \hat{l}_{\pm} -subunit surface in the thermal stability of Co-type nitrile hydratase. Applied Microbiology and Biotechnology, 2018, 102, 7891-7900.	3.6	13
22	Identification and functional analysis of the activator gene involved in the biosynthesis of Co-type nitrile hydratase from Aurantimonas manganoxydans. Journal of Biotechnology, 2017, 251, 38-46.	3.8	11
23	Rational immobilization of lipase by combining the structure analysis and unnatural amino acid insertion. Journal of Molecular Catalysis B: Enzymatic, 2016, 132, 54-60.	1.8	16
24	Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. Journal of Biotechnology, 2015, 203, 9-16.	3.8	17
25	Creation of Functionally Diverse Chimerical α-Glucosidase Enzymes by Swapping Homologous Gene Fragments Retrieved from Soil DNA. Indian Journal of Microbiology, 2015, 55, 114-117.	2.7	5
26	Discovery of a new Fe-type nitrile hydratase efficiently hydrating aliphatic and aromatic nitriles by genome mining. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 26-33.	1.8	16
27	Addition of Co2+ to culture medium decides the functional expression of a recombinant nitrile hydratase in Escherichia coli. Biotechnology Letters, 2013, 35, 1419-1424.	2.2	10
28	Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochemistry, 2013, 48, 1921-1927.	3.7	19