Satoshi Asaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333077/publications.pdf

Version: 2024-02-01

54 papers

857 citations

16 h-index 27 g-index

54 all docs

54 docs citations

times ranked

54

759 citing authors

#	Article	IF	CITATIONS
1	Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technology, 2009, 100, 4127-4132.	9.6	80
2	Adsorption of phosphate onto lanthanum-doped coal fly ashâ€"Blast furnace cement composite. Journal of Hazardous Materials, 2021, 406, 124780.	12.4	59
3	Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash. Journal of Colloid and Interface Science, 2012, 377, 284-290.	9.4	51
4	Mechanisms of Hydrogen Sulfide Removal with Steel Making Slag. Environmental Science & Samp; Technology, 2012, 46, 10169-10174.	10.0	49
5	Remediation of coastal marine sediments using granulated coal ash. Journal of Hazardous Materials, 2009, 172, 92-98.	12.4	48
6	Removal of hydrogen sulfide using carbonated steel slag. Chemical Engineering Journal, 2013, 228, 843-849.	12.7	44
7	Comparison of antimony and arsenic behavior in an Ichinokawa River water–sediment system. Chemical Geology, 2012, 334, 1-8.	3.3	43
8	Characteristics of phosphate adsorption onto granulated coal ash in seawater. Marine Pollution Bulletin, 2010, 60, 1188-1192.	5.0	36
9	A Preliminary Study of Coastal Sediment Amendment with Granulated Coal Ash-Nutrient Elution Test and Experiment on Skeletonema costatum Growth Journal of Japan Society on Water Environment, 2008, 31, 455-462.	0.4	26
10	Removal of Hydrogen Sulfide Using Granulated Coal Ash. Journal of Japan Society on Water Environment, 2009, 32, 363-368.	0.4	26
11	Suppression of phosphate release from coastal sediments using granulated coal ash. Estuarine, Coastal and Shelf Science, 2013, 116, 41-49.	2.1	25
12	Preconcentration Method of Antimony Using Modified Thiol Cotton Fiber for Isotopic Analyses of Antimony in Natural Samples. Analytical Sciences, 2011, 27, 25-28.	1.6	24
13	Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells. Marine Pollution Bulletin, 2012, 64, 2428-2434.	5.0	23
14	Growth Inhibition of <i>Microcystis aeruginosa</i> by Allelopathic Compounds Originally Isolated from <i>Myriophyllum spicatum</i> : Temperature and Light Effects and Evidence of Possible Major Mechanisms. Journal of Chemical Engineering of Japan, 2014, 47, 488-493.	0.6	20
15	Regeneration of manganese oxide as adsorption sites for hydrogen sulfide on granulated coal ash. Chemical Engineering Journal, 2014, 254, 531-537.	12.7	20
16	Spatial distribution of hydrogen sulfide and sulfur species in coastal marine sediments Hiroshima Bay, Japan. Marine Pollution Bulletin, 2018, 133, 891-899.	5.0	18
17	Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide. Chemosphere, 2017, 168, 384-389.	8.2	16
18	Recovery and Separation of Rare Earth Elements Using Columns Loaded with DNA-filter Hybrid. Analytical Sciences, 2012, 28, 985-992.	1.6	15

#	Article	IF	CITATIONS
19	Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment. Marine Pollution Bulletin, 2010, 60, 573-578.	5.0	14
20	Persistent organic pollutants are still present in surface marine sediments from the Seto Inland Sea, Japan. Marine Pollution Bulletin, 2019, 149, 110543.	5.0	14
21	Historical changes in primary production in the Seto Inland Sea, Japan, after implementing regulations to control the pollutant loads. Water Policy, 2018, 20, 855-870.	1.5	13
22	Organic matter degradation characteristics of coastal marine sediments collected from the Seto Inland Sea, Japan. Marine Chemistry, 2020, 225, 103854.	2.3	13
23	Capillary zone electrophoresis determination of aniline and pyridine in sewage samples using transient isotachophoresis with a system-induced terminator. Journal of Chromatography A, 2017, 1511, 132-137.	3.7	12
24	The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Ecotoxicology and Environmental Safety, 2018, 147, 132-138.	6.0	12
25	Biological productivity evaluation at lower trophic levels with intensive Pacific oyster farming of Crassostrea gigas in Hiroshima Bay, Japan. Aquaculture, 2018, 495, 311-319.	3.5	12
26	Mechanism of Suppression of Sulfide Ion in Seawater Using Steelmaking Slag. ISIJ International, 2014, 54, 1741-1748.	1.4	10
27	Enhancement of Marine Phytoplankton Growth by Steel-making Slag as a Promising Component for the Development of Algal Biofuels. ISIJ International, 2016, 56, 708-713.	1.4	10
28	A spot test for ammonium ion by the color band formation method. Talanta, 2007, 72, 1100-1105.	5.5	9
29	Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model. Marine Pollution Bulletin, 2015, 94, 55-61.	5.0	8
30	Growth and uptake kinetics of phosphate by benthic microalga <i>Nitzschia</i> sp. isolated from Hiroshima Bay, Japan. Phycological Research, 2012, 60, 223-228.	1.6	7
31	Mechanism of Suppression of Sulfide Ion in Seawater Using Steelmaking Slag. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 618-625.	0.4	7
32	Detection tube method for trace level arsenic. Journal of Environmental Chemical Engineering, 2015, 3, 40-45.	6.7	7
33	An online solid phase extraction method for the determination of ultratrace level phosphate in water with a high performance liquid chromatograph. Chemical Geology, 2014, 380, 41-47.	3.3	6
34	Removal of hydrogen sulfide with steelmaking slag by concurrent reactions of sulfide mineralization and oxidation. Ecological Engineering, 2014, 63, 122-126.	3.6	6
35	Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass. Marine Pollution Bulletin, 2016, 107, 188-205.	5.0	6
36	Removal of hydrogen sulfide with granulated coal ash under aerobic and anaerobic conditions. Journal of Environmental Chemical Engineering, 2018, 6, 4665-4670.	6.7	6

#	Article	IF	CITATIONS
37	Identifying sulfur species adsorbed on particulate matters in exhaust gas emitted from various vessels. Chemosphere, 2019, 223, 399-405.	8.2	6
38	Quantitative Measurement on Removal Mechanisms of Phosphate by Class–F Fly Ash. International Journal of Coal Preparation and Utilization, 2020, 40, 892-903.	2.1	6
39	A Conflict between the Legacy of Eutrophication and Cultural Oligotrophication in Hiroshima Bay. Oceans, 2021, 2, 546-565.	1.3	6
40	Determination Method for Maximum Calcium Releasing Potential from Steel Slags, Marine Sands Alternatives in Seawater. ISIJ International, 2013, 53, 1888-1893.	1.4	6
41	Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: A small inlet can contribute towards particulate organic matter production. Marine Pollution Bulletin, 2011, 63, 237-242.	5.0	4
42	Estimation of spatial distribution of coastal ocean primary production in Hiroshima Bay, Japan, with a geostationary ocean color satellite. Estuarine, Coastal and Shelf Science, 2020, 244, 106897.	2.1	4
43	Terrestrial anaerobic digestate composite for fertilization of oligotrophic coastal seas. Journal of Environmental Management, 2021, 293, 112944.	7.8	4
44	A Preliminary Study of Development for Coastal Sediment Amendment with Granulated Stone Powder-Nutrient Elution Test and Growth Experiment of Skeletonema costatum Journal of Japan Society on Water Environment, 2008, 31, 93-99.	0.4	3
45	Effect of Carbonated Steelmaking Slag on the Growth of Benthic Microalgae. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 260-266.	0.4	3
46	Chemical behavior of sand alternatives in the marine environment. Chemosphere, 2014, 111, 164-168.	8.2	3
47	A membrane extraction method for trace level phosphate analysis. Analytical Methods, 2015, 7, 9268-9273.	2.7	3
48	A pilot study on remediation of muddy tidal flat using porous pile. Marine Pollution Bulletin, 2017, 114, 837-842.	5.0	3
49	Temporal distribution of primary and secondary production estimated from water quality data in the Seto Inland Sea, Japan. Ecological Indicators, 2021, 124, 107405.	6.3	3
50	Mechanisms of solidification and subsequent embrittlement of dephosphorization slag used in a subtidal zone as an alternative to sea sand and prevention of solidification by adding dredged soil. Clean Technologies and Environmental Policy, 2016, 18, 1167-1176.	4.1	2
51	Removal of hydrogen sulfide gas using coal fly ash – blast furnace cement composite. Journal of Water Sanitation and Hygiene for Development, 2021, 11, 824-830.	1.8	2
52	Throughfall and stemflow chemical dynamics of Satoyama, a traditional secondary forest system under threat in Japan. Journal of Forestry Research, 2022, 33, 813-826.	3.6	2
53	Evaluation of steelmaking slag as basal media for coastal primary producers. Marine Pollution Bulletin, 2015, 100, 240-248.	5.0	1
54	Annual dynamics of benthic primary production by macrophytes on a sand flat in the eutrophic Hiroshima Bay, Japan. Regional Studies in Marine Science, 2020, 34, 101000.	0.7	1